精英家教网 > 高中数学 > 题目详情
曲线的参数方程
x=3t2+2
y=t2-1
(t是参数),则曲线是(  )
分析:把曲线的参数方程,消去参数,化为普通方程,可得结论.
解答:解:把曲线的参数方程
x=3t2+2
y=t2-1
(t是参数),消去参数,化为普通方程为 x-3y-5=0,
故选D.
点评:本题主要考查把参数方程化为普通方程的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-4:坐标系与参数方程】
(1)求点M(2,
π
3
)到直线ρ=
3
sinθ+cosθ
上点A的距离的最小值.
(2)求曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)
关于直线y=1对称的曲线的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
(1)参数方程与极坐标:求点M(2,
π
3
)到直线ρ=
3
sinθ+cosθ
上点A的距离的最小值.
(2)曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)
关于直线y=1对称的曲线的参数方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

参数方程
x=3-2t
y=-1-4t
(t为参数)所表示的曲线是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则接所做的第一题计分)
(l)(坐标系与参数方程选做题)在直角坐标系xoy中,曲线C1参数方程
x=cosa
y=1+sina
(a为参数),在极坐标系(与直角坐标系xoy相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ-sinθ)+1=0,则曲线C1与 C2的交点个数为
2
2

(2)(不等式选做题)若关于x的不等式ax2-|x-1|+2a<0的解集为空集,则a的取值范围是
a
3
+1
4
a
3
+1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=ttanα
(t为参数),圆C2
x=cosθ
y=sinθ
(θ为参数).当α=
π
3
时,将直线和曲线的参数方程转化成普通方程并,求C1与C2的交点坐标.

查看答案和解析>>

同步练习册答案