精英家教网 > 高中数学 > 题目详情
(2013•天津)如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明:EF∥平面A1CD;
(Ⅱ)证明:平面A1CD⊥平面A1ABB1
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.
分析:(I)连接ED,要证明EF∥平面平面A1CD,只需证明EF∥DA1即可;
(II)欲证平面平面A1CD⊥平面A1ABB1,即证平面内一直线与另一平面垂直,根据直线与平面垂直的判定定理证得CD⊥面A1ABB1,再根据面面垂直的判定定理得证;
(III)先过B作BG⊥AD交A1D于G,利用(II)中结论得出BG⊥面A1CD,从而∠BCG为所求的角,最后在直角△BGC中,求出sin∠BCG即可得出直线BC与平面A1CD所成角的正弦值.
解答:证明:(I)三棱柱ABC-A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,
可得DE∥AC,DE=
1
2
AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,
所以A1DEF是平行四边形,所以EF∥DA1
DA1?平面A1CD,EF?平面A1CD,∴EF∥平面A1CD
(II)∵D是AB的中点,∴CD⊥AB,
又AA1⊥平面ABC,CD?平面ABC,
∴AA1⊥CD,又AA1∩AB=A,
∴CD⊥面A1ABB1,又CD?面A1CD,
∴平面A1CD⊥平面A1ABB1
(III)过B作BG⊥A1D交A1D于G,
∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,
BG⊥A1D,
∴BG⊥面A1CD,
则∠BCG为所求的角,
设棱长为a,可得A1D=
5
2
a
,由△A1AD∽△BGD,得BG=
5
5
a

在直角△BGC中,sin∠BCG=
BG
BC
=
5
5

∴直线BC与平面A1CD所成角的正弦值
5
5
点评:本题主要考查了平面与平面垂直的判定,直线与平面所成的角,以及直线与平面平行的判定,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为
15
2
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)某几何体的三视图如图所示,则该几何体的体积为
36π
36π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为
8
3
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案