根据等差数列前n项和S
n=an
2+bn,则有
,求出a、b的值,由此可知 S
40=-
×40=484.
解答:解:设S
n=an
2+bn,
则有
,
解得 a=
,b=
,
∴S
40=-
×1600+
×40=484.
故选D.
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
设
是公比大于1的等比数列,
为数列
的前
项和.已知
,
且
构成等差数列.
(1)求数列
的通项公式;
(2)令
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
设函数f(x)满足f(n+1)=
(n∈N*)且f(1)=2,则f(20)为( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
数列
中,如果
=3n(n=1,2
,3,…) ,那么这个数列是 ( )
A.公差为2的等差数列 | B.公差为3的等差数列
| C.首项为3的等比数列 | D.首项为1的等比数列 |
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
等差数列
的前
项和为
,且
,若存在自然数
,使得
,则当
时,
与
的大小关系是 。
查看答案和解析>>