精英家教网 > 高中数学 > 题目详情
用红、黄、蓝、白、橙五种颜色的鲜花布置如图所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色的鲜花。
(1)求恰有两个区域用红色鲜花的概率;
(2)记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望。

解:(1)设M表示事件“恰有两个区域用红色鲜花”,
如图,A、D为红色时,共有4×3×3=36种,B、E为红色时,共有4×3×3=36种,
因此,事件M包含的基本事件有:36+36=72种;
当区域A、D同色时,共有5×4×3×3=180种;
当区域A、D不同色时,共有5×4×3×2×2=240种,
因此,所有基本事件总数为:180+240=420种,
它们是等可能的所以,恰有两个区域用红色鲜花的概率P(M)=

(2)随机变量ξ的取值分别为0,1,2,
则当ξ=0时,用黄、蓝、白、橙四种颜色来涂色,
若A、D为同色时,共有4×3×2×1×2=48种;
若A、D为不同色时,共有4×3×2×1×1=24种;
即ξ=0所包含的基本事件有48+24=72种,
所以,
由(1)知,
所以
从而随机变量ξ的分布列为:

ξ

0

1

2

P

所以,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网[理]用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图所示的花圃,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.
(1)求恰有两个区域用红色鲜花的概率;
(2)记花圃中红色鲜花区域的块数为X,求X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?
(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率;
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?
(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.
①求恰有两个区域用红色鲜花的概率;
②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).
精英家教网

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省南充市高三第二次诊断性考试理科数学卷 题型:解答题

用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图所示的花圃(不一定用完每一种颜色的鲜花),要求同一区域上用同一种颜色的鲜花,相邻区域用不同颜色的鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为的分布列和数学期望E

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题16分)

(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?

(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).

 

查看答案和解析>>

同步练习册答案