精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(a>0,x∈R),当x∈[0,]时,其最大值为4,最小值为1,
(1)求a,b的值;
(2)函数f(x)的图象,可由y=sinx的图象经过怎样的变换得到?写出变换步骤.
【答案】分析:(1)利用x∈[0,],求得的范围,通过正弦函数的单调增性求出函数的最大值,最小值,结合条件列出方程即可求得a,b的值.
(2)利用二倍角公式、两角和的正弦函数化简函数的表达式为一个角的一个三角函数的形式,根据最大值、最小值列出方程,求出a,b的值.
先求函数y=sinx的图象先向左平移 ,再求图象上所有的点的横坐标变为原来的 倍(纵坐标不变),求出所得到的图象对应的函数解析式即可.
解答:解:(1)∵,∴
故由a>0时,,∴;(11分)
(2)∵函数f(x)=
将函数y=sinx的图象先图象上所有的点的横坐标变为原来的 倍(纵坐标不变),
再向右平移 ,得到函数y=sin(2x-)的图象,
将所得图象上所有的点的纵坐标变为原来的 10倍(横坐标不变),
则所得到的图象对应的函数解析式为:函数f(x)=
点评:本题考查函数y=Asin(ωx+φ)的图象变换,最值的应用,单调性的应用,考查逻辑思维能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案