精英家教网 > 高中数学 > 题目详情
解不等式:loga
2
3
x-1)<loga3x(a>0且a≠1)
考点:指、对数不等式的解法
专题:不等式的解法及应用
分析:直接分a>1和0<a<1两种情况讨论,由对数函数的单调性去掉对数符号转化为一元一次不等式组求解.
解答: 解:由loga
2
3
x-1)<loga3x,
当a>1时,原不等式转化为
2
3
x-1>0
3x>0
2
3
x-1<3x
,解得:x>
3
2

当0<a<1时,原不等式化为
2
3
x-1>0
3x>0
2
3
x-1>3x
,解得:x∈∅.
综上,当a>1时,原不等式的解集为(
3
2
,+∞
);
当0<a<1时,原不等式的解集为∅.
点评:本题考查了对数不等式的解法,考查了分类讨论的数学思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π-α)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:4x2+y2=1及直线l:y=x+m,m∈R.
(1)求直线l被椭圆C截得的弦的中点的轨迹;
(2)若直线l交椭圆C于P、Q两点,且OP⊥OQ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x<7},B={2<x<10},则A∩B(  )
A、{x|3≤x<7}
B、{x|3<x<7}
C、{x|2≤x<7}
D、{x|2≤x<10}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+a(x∈[0,3]),它的任意三个函数值总可以作为一个三角形的三边长,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,平面向量 
OA
=(1,3),
OB
=(3,5),
OP
=(1,2),且
OX
=k
OP
(k为实数).当
XA
XB
取得最小值时,点X的坐标是(  )
A、(4,2)
B、(2,4)
C、(6,3)
D、(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

过两点A(m2+2,m2-4),B(3-m-m2,3m)的直线l的倾斜角为135°,则m=(  )
A、
5
3
B、-
5
3
C、
5
3
或-1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知点P(2,
2
),曲线C:p=4cosθ.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,过点P作倾斜角为α的直线l.
(1)写出直线l的参数方程和曲线C的普通方程;
(2)若直线l交曲线C于点M,N两点,求|PM|2+|PN|2的最大值及其相应α的值.

查看答案和解析>>

同步练习册答案