精英家教网 > 高中数学 > 题目详情

【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

1

2

3

4

5

6

销售单价()

9

9.5

10

10.5

11

8

销售量()

11

10

8

6

5

14.2

1)根据15月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?

2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

参考数据:

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

【答案】1,理想 2)单价定为/件时,获得的利润最大

【解析】

1)求出平均数,根据公式求解回归直线方程,结合给定数据检验是否理想;

2)根据单价和销量得出利润关于单价的函数关系,根据函数求解最值.

1)因为

所以,则

于是关于的回归直线方程为

6月数据有:,此时,

所以可以认为所得到的回归直线方程是理想的.

2)令销售利润为,则

因为

当且仅当,即时,取最大值.

所以该产品的销售单价定为/件时,获得的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为调研学校师生的环境保护意识,决定在本市所有学校中随机抽取60所进行环境综合考评成绩达到80分以上(含80分)为达标.60所学校的考评结果频率分布直方图如图所示(其分组区间为[5060),[6070),[7080),[8090),[90100]).

)试根据样本估汁全市学校环境综合考评的达标率;

)若考评成绩在[90.100]内为优秀.且甲乙两所学校考评结果均为优秀从考评结果为优秀的学校中随机地抽取两所学校作经验交流报告,求甲乙两所学校至少有一所被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点边上的中线所在直线方程为的角平分线所在直线方程为

(I)求顶点的坐标;

(II)求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若直线与函数的图象相切,求实数的值;

(2)若存在,使,且,求实数的取值范围;

(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足),).

(1)若,证明:是等比数列;

(2)若存在,使得成等差数列.

① 求数列的通项公式;

② 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于两个不同的点.

(1)求点到其准线的距离;

(2)求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为左、右焦点,直线交椭圆于两点.

1)若垂直于轴时,求

2)当时,轴上方时,求的坐标;

3)若直线轴于,直线轴于,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其图象上存在不同的两点,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.

其中为“柯西函数”的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次招聘分为笔试和面试两个环节,且只有笔试过关者方可进入面试环节,笔试与面试都过关才会被录用.笔试需考完全部三科,且至少有两科优秀才算笔试过关,面试需考完全部两科且两科均为优秀才算面试过关.假设某考生笔试三科每科优秀的概率均为,面试两科每科优秀的概率均为.

(1)求该考生被录用的概率;

(2)设该考生在此次招聘活动中考试的科目总数为,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案