精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若直线与函数的图象相切,求实数的值;

(2)若存在,使,且,求实数的取值范围;

(3)当时,求证:

【答案】(1);(2);(3)详见解析.

【解析】

(1)由f′(x0.可得切线方程为:y=()x+lnx0,与直线y=2x完全相同,可得=2,lnx0=0.即可得出a.

(2)设t(x)=ex﹣x,x∈R.t′(x)=ex﹣1,利用导数研究其单调性可得0是函数t(x)的极小值点,可得.再由g(x2)=0,解得x2,可得x1的范围.从而问题可转化为函数f(x)=lnx﹣ax+1在x∈(1,+∞)上有零点.由f′(x)a.对a分类讨论,研究其单调性即可得出.

(3)构造函数F(x)=x2+g(x)﹣f(x),利用导数研究其单调性极值与最值即可得出.

(1)设切点坐标为

,得

所以切线方程为:

.

因为直线与函数的图象相切,

所以,解得.

(2)设,则,令,得

且当时,:当时,

所以上单调递减,在上单调递增,

所以时取得极小值为0,即.

,可得

所以即为

由题意可得:函数上有零点.

因为

时,,函数上单调递增,

所以,函数上无零点:

时,令,得.

①若,即时,上恒成立,

所以函数上单调递减,

所以,函数上无零点:

②若,即时,

时,:当时,.

所以函数上单调递增,在上单调递减,

所以

因为,所以函数上无零点:

上恒成立,

所以上单调递增,

所以,即

所以,且的图象连续不断,

所以函数上有且只有一个零点,

即函数上有零点.

综上所述,.

(3)当时,

,则当时,

所以函数在区间上是增函数,

所以函数存在唯一的零点

且当时,;当时,.

所以当时,;当时,.

所以函数上递减,在上递增,

得:

两边取对数得:,故

所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过直线2x+y+4=0和圆x2+y2+2x4y+1=0的交点,且面积最小的圆方程为(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C(a>b>0)的左.右顶点分别为AB,离心率为,点P为椭圆上一点.

(1) 求椭圆C的标准方程;

(2) 如图,过点C(01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k12k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面,点分别为的中点.

(1)求证:平面

(2)是线段上的点,且平面.

①确定点的位置;

②求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是圆上的动点,定点,线段的垂直平分线交,记点的轨迹为.

(Ⅰ)求轨迹的方程;

(Ⅱ)若动直线与轨迹交于不同的两点,点在轨迹上,且四边形为平行四边形.证明:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南通风筝是江苏传统手工艺品之一.现用一张长2 m,宽1.5 m的长方形牛皮纸ABCD裁剪风筝面,裁剪方法如下:分别在边ABAD上取点E,F,将三角形AEF沿直线EF翻折到处,点落在牛皮纸上,沿裁剪并展开,得到风筝面,如图1.

(1)若点E恰好与点B重合,且点BD上,如图2,求风筝面的面积;

(2)当风筝面的面积为时,求点AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

1

2

3

4

5

6

销售单价()

9

9.5

10

10.5

11

8

销售量()

11

10

8

6

5

14.2

1)根据15月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?

2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

参考数据:

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

(2)已知,经过原点,且斜率为正数的直线与圆交于两点.

(ⅰ)求证: 为定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

同步练习册答案