精英家教网 > 高中数学 > 题目详情

已知函数数学公式,x∈(1,2],(Ⅰ)判断f(x)的单调性,并用定义证明你的结论;(Ⅱ)求f(x)的值域.

解:(Ⅰ)解:f(x)在(1,2]上为增函数.证明如下:
设x1,x2是区间(1,2]上的任意两个实数且x1<x2

=(x1-x2)(x1+x2)-=(x1-x2)(x1+x2+
∵1<x1<x2≤2
∴x1+x2+>0 x1-x2<0
∴f(x1)-f(x2)<0  即f(x1)<f(x2
∴f(x)在(1,2]上为增函数;
(Ⅱ)由(Ⅰ)f(x)在(1,2]上为增函数,
所以f(x)在(1,2]上的值域:
分析:(Ⅰ)任取3≤x1<x2≤5,我们构造出f(x2)-f(x1)的表达式,根据实数的性质,我们易出f(x2)-f(x1)的符号,进而根据函数单调性的定义,得到答案;
(Ⅱ)根据(1)可知函数的单调性,将区间端点的值代入即可求出函数的值域.
点评:本题主要考查函数单调性的判断与证明,以及应用单调性求函数的最值,同时还考查了学生的变形,转化能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x+1
,则f(
1
2
)+f(
1
3
)+f(
1
4
)+f(-
1
2
)+f(-
1
3
)+f(-
1
4
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1,x≤0
-2x,x>0

(1)求f(-2),f[f(-2)]的值;   
(2)若f(x)=10,求x的值;
(3)若f(x)≥5,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3xx+1
,求f(x)在区间[2,5]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1+b
1-x2
,其中a∈{0,1},b∈{1,2},则f(x)>0在x∈[-1,0]上有解的概率为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案