精英家教网 > 高中数学 > 题目详情
已知函数则f[f(-1)]的值为   
【答案】分析:现根据函数的解析式求出f(-1)的值,从而求出f[f(-1)]的值.
解答:解:∵函数,∴f(-1)==1,∴f[f(-1)]=f(1)=1.
故答案为:1.
点评:本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,分类讨论是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为(0,+∞),f(x)的导函数为f′(x),且对任意正数X均有f′(x)>
f(x)
x
,则下列结论中正确的是(  )
A、y=f(x)在(0,+∞)上为增函数
B、y=
f(x)
x
在(0,+∞)上为减函数
C、若x1,x2∈(0,+∞)则f((x1)+f(x2)>f(x1+x2
D、若x1,x2∈(0,+∞),则f(x1)+f(x2)<f(x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是
①②③
①②③
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3(x>0)
(3-a)x-a(x≤0)
,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
f(x1)+f(x)2
2
<f(
x1+x2
2
);  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有
(2)(4)
(2)(4)
(只填相应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)是定义在R上的奇函数,若f(x)在区间[1,a](a>2)上单调递增,且f (x)>0,则以下不等式不一定成立的是(  )

查看答案和解析>>

同步练习册答案