【题目】在四棱锥中,底面是边长为2的正方形,底面,四棱锥的体积,M是的中点.
(1)求异面直线与所成角的余弦值;
(2)求点B到平面的距离.
【答案】(1)(2)
【解析】
(1)取中点N,连接,则,则与所成的角就是异面直线与所成的角,即,进而求解即可;
(2)在平面内过点A作,垂足为E,先证得平面,再根据平面可得点B到平面的距离等于点A到平面的距离,即为,进而求解即可
(1)取中点N,连接,
∵底面,且底面是边长为2的正方形,则底面积为,
,解得,
∵分别为的中点,∴,
所以与所成的角就是异面直线与所成的角,即,
因为,
所以,
所以异面直线与所成角的余弦值为
(2)在平面内过点A作,垂足为E,
∵底面,平面,∴,
∵四边形是正方形,则,
∵,∴平面,
∵平面,∴,又∵,,∴平面,
∵,平面,平面,∴平面,
所以,点B到平面的距离等于点A到平面的距离,即为,
在中,,,故,
因此,点B到平面的距离为
科目:高中数学 来源: 题型:
【题目】已知是圆:上任意一点,,线段的垂直平分线与半径交于点,当点在圆上运动时,记点的轨迹为曲线.
(1)求曲线的方程;
(2)记曲线与轴交于两点,是直线上任意一点,直线,与曲线的另一个交点分别为,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、,试在“8”字形曲线上求点,使得是直角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五边形中,四边形为长方形,为边长为的正三角形,将沿折起,使得点在平面上的射影恰好在上.
(Ⅰ)当时,证明:平面平面;
(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
间隔时间x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.
(1)从这6组数据中随机选取4组数据,求剩下的2组数据的间隔时间相邻的概率;
(2)若选取的是中间4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱、的交点记为.
(1)在三棱柱中,若过三点做一平面,求截得的几何体的表面积;
(2)求三棱柱中异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率为,设直线过椭圆的上顶点和右顶点,坐标原点到直线的距离为.
(1)求椭圆的方程.
(2)过点且斜率不为零的直线交椭圆于,两点,在轴的正半轴上是否存在定点,使得直线,的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C是抛物线W:y2=4x上的三个点,D是x轴上一点.
(1)当点B是W的顶点,且四边形ABCD为正方形时,求此正方形的面积;
(2)当点B不是W的顶点时,判断四边形ABCD是否可能为正方形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于,两点.若双曲线的离心率为,的面积为,为坐标原点,则抛物线的焦点坐标为 ( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com