【题目】在四棱锥
中,底面
是边长为2的正方形,
底面
,四棱锥
的体积
,M是
的中点.
![]()
(1)求异面直线
与
所成角的余弦值;
(2)求点B到平面
的距离.
【答案】(1)
(2)![]()
【解析】
(1)取
中点N,连接
,则
,则
与
所成的角就是异面直线
与
所成的角,即
,进而求解即可;
(2)在平面
内过点A作
,垂足为E,先证得
平面
,再根据
平面
可得点B到平面
的距离等于点A到平面
的距离,即为
,进而求解即可
(1)取
中点N,连接
,
∵
底面
,且底面
是边长为2的正方形,则底面积为
,
,解得
,
∵
分别为
的中点,∴
,
所以
与
所成的角就是异面直线
与
所成的角,即
,
因为
,
所以
,
所以异面直线
与
所成角的余弦值为![]()
(2)在平面
内过点A作
,垂足为E,
∵
底面
,
平面
,∴
,
∵四边形
是正方形,则
,
∵
,∴
平面
,
∵
平面
,∴
,又∵
,
,∴
平面
,
∵
,
平面
,
平面
,∴
平面
,
所以,点B到平面
的距离等于点A到平面
的距离,即为
,
在
中,
,
,故
,
因此,点B到平面
的距离为![]()
![]()
科目:高中数学 来源: 题型:
【题目】已知
是圆
:
上任意一点,
,线段
的垂直平分线与半径
交于点
,当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)记曲线
与
轴交于
两点,
是直线
上任意一点,直线
,
与曲线
的另一个交点分别为
,求证:直线
过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的“8”字形曲线是由两个关于
轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是
,双曲线的左、右顶点
、
是该圆与
轴的交点,双曲线与半圆相交于与
轴平行的直径的两端点.
![]()
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为
、
,试在“8”字形曲线上求点
,使得
是直角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五边形
中,四边形
为长方形,
为边长为
的正三角形,将
沿
折起,使得点
在平面
上的射影恰好在
上.
![]()
(Ⅰ)当
时,证明:平面
平面
;
(Ⅱ)若
,求平面
与平面
所成二面角的余弦值的绝对值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
间隔时间x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.
(1)从这6组数据中随机选取4组数据,求剩下的2组数据的间隔时间相邻的概率;
(2)若选取的是中间4组数据,求y关于x的线性回归方程
,并判断此方程是否是“恰当回归方程”.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,把长为6,宽为3的矩形折成正三棱柱
,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱
、
的交点记为
.
![]()
(1)在三棱柱
中,若过
三点做一平面,求截得的几何体
的表面积;
(2)求三棱柱中异面直线
与
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,设直线
过椭圆
的上顶点和右顶点,坐标原点
到直线
的距离为
.
(1)求椭圆
的方程.
(2)过点
且斜率不为零的直线
交椭圆
于
,
两点,在
轴的正半轴上是否存在定点
,使得直线
,
的斜率之积为非零的常数?若存在,求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C是抛物线W:y2=4x上的三个点,D是x轴上一点.
(1)当点B是W的顶点,且四边形ABCD为正方形时,求此正方形的面积;
(2)当点B不是W的顶点时,判断四边形ABCD是否可能为正方形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的两条渐近线与抛物线
的准线分别交于
,
两点.若双曲线
的离心率为
,
的面积为
,
为坐标原点,则抛物线
的焦点坐标为 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com