(本小题满分14分)
已知函数![]()
(Ⅰ)若函数
有三个零点
且
,
,且
,求函数
的单调区间;
(Ⅱ)若
试问:导函数
在区间
内是否有零点,并说明理由;
(Ⅲ)在(Ⅱ)的条件下,若导数
的两个零点之间的距离不小于
,求
的取值范围。
解:
(I)![]()
………………1分
![]()
由(1)、(2)可知:
………………2分
![]()
x
(-1,4) ![]()
f’(x) + - +
f(x)
↑ ………………2分
(II)![]()
![]()
………………2分
![]()
………………1分
1o当c>0时 f’(0)>0 f’(1)<0 ∴f’(x)在(0,1)内至少有一个零点 ……1分
2o当c≤0时 f’(2)>0 f’(1)<0 ∴f’(x)在(1,2)内至少有一个零点 ……1分
综上f’(x)在(0,2)内至少有一个零点
(III)设m、n是导函数f’(x)=ax2+bx+c的两个零点![]()
![]()
另一方面:2c=-3a-2b且3a>2c>2b
∴3a>-3a-2b>2b
![]()
![]()
综上![]()
【解析】略
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com