【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.
![]()
根据该折线图,下列结论错误的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
科目:高中数学 来源: 题型:
【题目】如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,
. ![]()
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0.若点B的坐标为(1,2),求点A和点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A﹣BCFE中,四边形EFCB为梯形,EF∥BC,且EF=
BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=
,CF=
,BF=
. ![]()
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的顶点
,
边上的中线
所在的直线方程为
,
边上的高
所在直线的方程为
.
(
)求
的顶点
、
的坐标.
(
)若圆
经过不同的三点
、
、
,且斜率为
的直线与圆
相切于点
,求圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量
(简称血酒含量,单位是毫克/100毫升),当
时,为酒后驾车;当
时,为醉酒驾车.某市交通管理部门于某天晚上8点至11点设点进行一次拦查行动,共依法查出60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中
的人数计入
人数之内).
![]()
1)求此次拦查中醉酒驾车的人数;
2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取2人,求两人中恰有1人醉酒驾车的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com