(本题满分15分)
已知函数
.
(Ⅰ)若
无极值点,但其导函数
有零点,求
的值;
(Ⅱ)若
有两个极值点,求
的取值范围,并证明
的极小值小于
.
解 (Ⅰ)首先,
--------1分
---------------3分
有零点而
无极值点,表明该零点左右
同号,故
,
且
的
由此可得
----------6分
(Ⅱ)由题意,
有两不同的正根,故
.
解得:
----------------8分
设
的两根为
,不妨设
,因为在区间
上,
,而在区间
上,
,故
是
的极小值点.-------10分
因
在区间
上
是减函数,如能证明
则更有
---------------13分
由韦达定理,
,![]()
令
其中
设
,利用导数容易证明
当
时单调递减,
而
,因此
,即
的极小值
-------15分
(Ⅱ)另证:实际上,我们可以用反代的方式证明
的极值均小于
.
由于两个极值点是方程
的两个正根,所以反过来,![]()
(用
表示
的关系式与此相同),这样
![]()
即
,再证明该式小于
是容易的(注意
,下略).
【解析】略
科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题
((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题
(本题满分15分)设函数
.
(Ⅰ)若函数
在
上单调递增,在
上单调递减,求实数
的最大值;
(Ⅱ)若
对任意的
,
都成立,求实数
的取值范围.
注:
为自然对数的底数.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题
(本题满分15分)已知直线
与曲线
相切
1)求b的值;
2)若方程
在
上恰有两个不等的实数根
,求
①m的取值范围;
②比较
的大小
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题
(本题满分15分)已知抛物线
:
(
),焦点为
,直线
交抛物线
于
、
两点,
是线段
的中点,
过
作
轴的垂线交抛物线
于点
,
(1)若抛物线
上有一点
到焦点
的距离为
,求此时
的值;
(2)是否存在实数
,使
是以
为直角顶点的直角三角形?若存在,求出
的值;若不存在,说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题
(本题满分15分)
已知函数![]()
(1)求
的单调区间;
(2)设
,若
在
上不单调且仅在
处取得最大值,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com