精英家教网 > 高中数学 > 题目详情
5.已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>f′(x),则不等式ex+2•f(x2-x)>e${\;}^{{x}^{2}}$•f(2)的解集是(  )
A.(-1,2)B.(-1,0)∪(1,2)C.(-∞,-1)∪(2,+∞)D.(-2,-1)∪(0,2)

分析 构造新函数g(x)=$\frac{f(x)}{{e}^{x}}$,通过求导得到g(x)的单调性,所解的不等式转化为求g(x2-x)>g(2),结合函数的单调性得到不等式,解出即可.

解答 解:设g(x)=$\frac{f(x)}{{e}^{x}}$,(x>0),则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
∴g(x)在(0,+∞)单调递减,
由ex+2•f(x2-x)>e${\;}^{{x}^{2}}$•f(2),
得:ex•e2•f(x2-x)>${e}^{{x}^{2}}$•f(2),
得:$\frac{f{(x}^{2}-x)}{{e}^{{x}^{2}-x}}$>$\frac{f(2)}{{e}^{2}}$,
∴g(x2-x)>g(2),
∴0<x2-x<2,解得:-1<x<0或1<x<2,
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,构造新函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=x+$\frac{1}{x}$(x>0)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,且Sn=-an+2n,(n∈N*).
(1)证明:数列{an-2}是等比数列,并求数列{an}的通项;
(2)设bn=$\frac{{a}_{n}}{{a}_{n+1}}$+$\frac{{a}_{n+1}}{{a}_{n}}$-2,数列{bn}的前n项和为Tn
①求证:4bn+1<bn
②求证:Tn<$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}满足a1=1,an=2an-1+1,n≥2,n∈N*
(1)证明:数列{an+1}是等比数列;
(2)若bn=anlog2(an+1),求Sn=b1+b2+…+bn
(3)若cn=$\frac{{a}_{n}+1}{({a}_{n}+2)({a}_{n}+3)}$,求Tn=c1+c2+c3+…+cn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an},{bn}的通项公式分别是an=n,bn=2n,其前n项的和分别为An,Bn,cn=anBn+bnAn-anbn,则数列{cn}的前10项的和为112530.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1≤x<2},下列四个结论中正确的个数为(  )
(1)当U=R,∁UA={x|x≤-1}∪{x>2};
(2)当U=R,∁UA={x|x<-1}∪{x≥2};
(3)当U={x|x<3}时,∁UA={x|x<-1}∪{x|2<x<3};
(4)当U={x|-2≤x≤2}时,∁UA={x|-2≤x≤-1}∪{2}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=mlg$\frac{1-x}{1+x}$+nx+2,若f(lg(log310))=9,则f(lg(lg3))=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意实数k,直线(2k+2)x-ky-2=0与x2+y2-2x-2y-2=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2015年春节放假安排,农历除夕至正月初六放假,共7天,某单位安排7位员工值班,每人值班1天,每天安排1人,若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有(  )
A.1440种B.1360种C.1282种D.1128种

查看答案和解析>>

同步练习册答案