精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求证:方程f(x)=0必有两个不等实数根.

分析 根据条件可以判断出函数f(x)为二次函数,并且可得到b=-a-c,从而可以得到△=(a-c)2,而a>c,这样便可得到△>0,从而便得出方程f(x)=0有两个不等实数根.

解答 证明:f(1)=0;
∴a+b+c=0;
∵a>b>c;
∴a>0;
∴f(x)为二次函数;
b=-a-c;
∴b2=a2+2ac+c2
∴△=b2-4ac=a2-2ac+c2=(a-c)2
∵a>c;
∴(a-c)2>0;
即△>0;
∴方程f(x)=0必有两个不等实数根.

点评 考查f(x)=ax2+bx+c若表示二次函数,需满足a≠0,完全平方公式的运用,以及一元二次方程的实数根的个数和判别式△取值的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知命题$p:?x∈[{1,2}],\frac{1}{2}{x^2}-lnx-a≥0$是真命题,则实数a的取值范围是(  )
A.$[{\frac{1}{2},+∞})$B.$({-∞,\frac{1}{2}}]$C.[2-ln2,+∞)D.(-∞,2-ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn=n2-9,则其通项an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\left\{\begin{array}{l}{sinx,x∈(-π,0]}\\{cosx,x∈(0,π)}\end{array}\right.$,则f(-$\frac{π}{3}$)+f($\frac{π}{6}$)+f($\frac{5π}{6}$)+f(-$\frac{2π}{3}$)=(  )
A.-1B.-$\sqrt{3}$C.-2$\sqrt{3}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期为π,且当x∈[-$\frac{π}{2}$,0)时,f(x)=sinx.则f(-$\frac{5}{3}$π)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正方形ABCD的边长为2,则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a是实数,函数f(x)=$\frac{{x}^{2}+ax+4}{x}$是奇函数,求f(x)在(0,+∞)上的最小值及取到最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.写出求$\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}}}}}}$的值的一个算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{cosx}$的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

同步练习册答案