精英家教网 > 高中数学 > 题目详情
4.已知正方形ABCD的边长为2,则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3D.4

分析 正方形ABCD的边长为2,可得对角线AC=2$\sqrt{2}$.则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=$|\overrightarrow{AC}|$.

解答 解:∵正方形ABCD的边长为2,
∴对角线AC=2$\sqrt{2}$.
则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=$|\overrightarrow{AC}|$=2$\sqrt{2}$.
故选:A.

点评 本题考查了正方形的性质、勾股定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}{a}_{n}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列满足${b_n}={({-1})^n}•\frac{2n+1}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在区间(0,+∞)上的函数f(x)满足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性,并证明;
(3)若f(2)=1,解不等式f(x2+3x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x+$\sqrt{1+2x}$.
(1)求函数的定义域;
(2)判断函数的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求证:方程f(x)=0必有两个不等实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=$\frac{1}{{x}^{2}}$,且f(1)=1,则函数f(x)的最大值为$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的两顶点分别是B(1,1)和C(3,6),求第三个顶点A的轨迹方程,使|AB|=|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.现有4张卡片,上面分别标有1、2、6、9四个数字.若标有“6”的卡片可以作“9”用,标有“9”的卡片也可以作“6”用.那么用这四张卡片组成的不同四位数有48个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x≥1,求函数y=2x2+$\frac{a}{{x}^{2}}$-2(a>0)的最小值.

查看答案和解析>>

同步练习册答案