精英家教网 > 高中数学 > 题目详情

(文科只做(1)(2)问,理科全做)

是函数图象上任意两点,且,已知点的横坐标为,且有,其中且n≥2,

(1) 求点的纵坐标值;

(2) 求

(3)已知,其中,且为数列的前n项和,若对一切都成立,试求λ的最小正整数值。

 

【答案】

(1)M点的纵坐标为定值

(2)

(3)的最小正整数为1。

【解析】

试题分析:(1)依题意由知M为线段AB的中点。

的横坐标为1,A,B

即M点的纵坐标为定值       (理3分)      (文4分)

(2)       (文6分)

      (文8分)

……(文8分)(理2小题共5分)

由①知

        (文14分)

(3)当时,

也适合。  

恒成立

(当且仅当取等号)

的最小正整数为1(理14分)

考点:本题主要考查函数的概念,对数函数的图象和性质,数列的概念,不等式恒成立问题。

点评:难题,本题综合考查函数的概念,对数函数的图象和性质,数列的概念,不等式恒成立问题。难度较大,对于不等式恒成立问题,往往通过构造函数,确定函数的最值,使问题得解。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•武汉模拟)(文科做) 有A、B两只口袋中均放有2个红球和2个白球,先从A袋中任取2个球放到B袋中,再从B袋中任取一个球放到A袋中,经过这样的操作之后.
(1)求A袋中没有红球的概率;      
(2)求A袋中恰有一只红球的概率.

查看答案和解析>>

科目:高中数学 来源:浙江省龙游中学2007届高三数学模拟练习卷(1) 题型:044

把圆周分成四等份,A是其中一个分点,动点P在四个分点上按逆时针方向前进,现投掷一个质地均匀的正四面体,它的四个面上分别写着1、2、3、4四个数字,P从A点出发,按照正四面体底面上的数字前进几个分点,转一周之前继续投掷.

Ⅰ.求点P恰好返回A点的概率.(文科只做第一问)

Ⅱ.(理做)在点P转一周恰能返回的所有结果中,用随机变量ξ表示点

P返回A点时的投掷次数,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省临海市高二第二学期第一次月考数学试卷 题型:解答题

(6分)(文科只做(1),理科(1)和(2)都做)

(1)求证: 不可能成等差数列 

(2)用数学归纳法证明:

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科做) 有A、B两只口袋中均放有2个红球和2个白球,先从A袋中任取2个球放到B袋中,再从B袋中任取一个球放到A袋中,经过这样的操作之后.
(1)求A袋中没有红球的概率;   
(2)求A袋中恰有一只红球的概率.

查看答案和解析>>

同步练习册答案