精英家教网 > 高中数学 > 题目详情
已知f(x)=2x-x2,g(x)=logax(a>0且a≠1),
(Ⅰ)过P(0,2)作曲线y=f(x)的切线,求切线方程;
(Ⅱ)设h(x)=f(x)-g(x)在定义域上为减函数,且其导函数y=h′(x)存在零点,求实数a的值。
解:(Ⅰ)f(0)=0,
∴P(0,2)不在曲线y=f(x)上,
设切点为Q(x0,y0),
∵f′(x)=2-x,
∴k=f′(x0)=2-x0,且y0=f(x0)=
∴切线,即
∵(0,2)在切线上,代入可得x0=±2,
∴切线为y=2或y=4x+2;
(Ⅱ)h(x)在(0,+∞)递减,
∴h′(x)=在x>0时恒成立,
∵x>0,
在x>0恒成立,
x>0时,2x-x2∈(-∞,1],
,∴0<lna≤1,①
又∵h′(x)=存在零点,即方程lna·x2-21na·x+1=0有正根,
∴Δ=4ln2a-4lna≥0,
∴lna≥1或lna<0,②
由①②知lna=1,
∴a=e。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案