¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©ÉèM£¨x£¬y£©£¬P£¨0£¬b£©£¬Q£¨a£¬0£©£¨a¡Ý0£©£¬
£¬
£¬
£¬ÓÉ
£¬µÃ
0£¬´Ó¶ø
£¬
£¬ÓÉ
£¬µÃHP¡ÍPM£¬ÓÉ´ËÄÜÇó³öMµÄ¹ì¼£C£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬Ö±Ïßl'µÄ·½³ÌΪ
£¬£¨k¡Ù0£©£¬ÉèA£¨x
1£¬y
1£©¡¢B£¨x
2£¬y
2£©£¬ÓÉ
£¬µÃky
2-4y-4k=0£¬¹Ê
£¬Í¬Àí|DE|=4£¨1+k
2£©ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
£¨3£©¢Ùµ±k¡Ù0ʱÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÓÉ
£¬µÃ£¨1+2k
2£©x
2-4k
2x+2k
2-2=0£¬¹Ê
£¬
£¬ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
¢ÚÓÉÌâÉ裬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬µ±k¡Ù0ʱ£¬ÓÉ
£¬µÃ£¨b
2+a
2k
2£©x
2-a
2b
2=0£¬ËùÒÔ
£¬Í¬Àí
£¬ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©ÉèM£¨x£¬y£©£¬P£¨0£¬b£©£¬Q£¨a£¬0£©£¨a¡Ý0£©£¬Ò×Öª
£¬
£¬
£¬ÓÉÌâÉè
£¬
µÃ
ÆäÖÐa¡Ý0£¬´Ó¶ø
£¬
£¬ÇÒx¡Ý0£¬
ÓÖÓÉÒÑÖª
£¬µÃHP¡ÍPM£¬
µ±b¡Ù0ʱ£¬y¡Ù0£¬´Ëʱ
£¬µÃ
£¬
ÓÖk
PM=k
PQ£¬¹Ê
£¬
£¬¼´
£¬y
2=4x£¨x¡Ù0£©£¬
µ±b=0ʱ£¬µãPΪԵ㣬HPΪxÖᣬPMΪyÖᣬµãQҲΪԵ㣬´Ó¶øµãMҲΪԵ㣬Òò´ËµãMµÄ¹ì¼£CµÄ·½³ÌΪy
2=4x£¬Ëü±íʾÒÔÔµãΪ¶¥µã£¬ÒÔ£¨1£¬0£©Îª½¹µãµÄÅ×ÎïÏߣ» £¨4·Ö£©
£¨2£©ÓÉÌâÉ裬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬Ö±Ïßl'µÄ·½³ÌΪ
£¬£¨k¡Ù0£©£¬ÓÖÉèA£¨x
1£¬y
1£©¡¢B£¨x
2£¬y
2£©£¬
ÔòÓÉ
£¬ÏûÈ¥x£¬ÕûÀíµÃky
2-4y-4k=0£¬
¹Ê
£¬Í¬Àí|DE|=4£¨1+k
2£©£¬£¨7·Ö£©
Ôò
£¬µ±ÇÒ½öµ±k=±1ʱµÈºÅ³ÉÁ¢£¬Òò´ËËıßÐÎADBEÃæ»ýSµÄ×îСֵΪ32£®£¨9·Ö£©
£¨3£©¢Ùµ±k¡Ù0ʱ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ
£¬µÃ£¨1+2k
2£©x
2-4k
2x+2k
2-2=0£¬
¹Ê
£¬
£¬£¨12·Ö£©
£¬
µ±ÇÒ½öµ±k
2=1ʱµÈºÅ³ÉÁ¢£®£¨14·Ö£©
µ±k=0ʱ£¬Ò×Öª
£¬
£¬µÃ
£¬¹Êµ±ÇÒ½öµ±k
2=1ʱËıßÐÎADBEÃæ»ýSÓÐ×îСֵ
£®£¨15·Ö£©
¢ÚÓÉÌâÉ裬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬µ±k¡Ù0ʱ£¬ÓÉ
£¬
ÏûÈ¥x£¬ÕûÀíµÃ£¨b
2+a
2k
2£©x
2-a
2b
2=0£¬µÃ
£¬
ͬÀí
£¬£¨12·Ö£©
Ôò
£¬ÆäÖÐk
2£¾0£¬
ÈôÁîu=1+k
2£¬ÔòÓÉ
=
£¬ÆäÖÐu£¾1£¬¼´
£¬¹Êµ±ÇÒ½öµ±u=2£¬¼´k
2=1ʱ£¬vÓÐ×î´óÖµ
£¬ÓÉ
£¬µÃSÓÐ×îСֵ
£¬¹Êµ±ÇÒ½öµ±k=±1ʱ£¬ËıßÐÎADBEÃæ»ýSÓÐ×îСֵΪ
£®£¨17·Ö£©
ÓÖµ±k=0ʱ£¬|AB|=2a£¬|DE|=2b£¬´ËʱS=2ab£¬ÓÉ
£¬µÃµ±ÇÒ½öµ±k=±1ʱ£¬ËıßÐÎADBEÃæ»ýSÓÐ×îСֵΪ
£®£¨18·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮