¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©ÉèM£¨x£¬y£©£¬P£¨0£¬b£©£¬Q£¨a£¬0£©£¨a¡Ý0£©£¬

£¬

£¬

£¬ÓÉ

£¬µÃ

0£¬´Ó¶ø

£¬

£¬ÓÉ

£¬µÃHP¡ÍPM£¬ÓÉ´ËÄÜÇó³öMµÄ¹ì¼£C£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬Ö±Ïßl'µÄ·½³ÌΪ

£¬£¨k¡Ù0£©£¬ÉèA£¨x
1£¬y
1£©¡¢B£¨x
2£¬y
2£©£¬ÓÉ

£¬µÃky
2-4y-4k=0£¬¹Ê

£¬Í¬Àí|DE|=4£¨1+k
2£©ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
£¨3£©¢Ùµ±k¡Ù0ʱÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÓÉ

£¬µÃ£¨1+2k
2£©x
2-4k
2x+2k
2-2=0£¬¹Ê

£¬

£¬ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
¢ÚÓÉÌâÉ裬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬µ±k¡Ù0ʱ£¬ÓÉ

£¬µÃ£¨b
2+a
2k
2£©x
2-a
2b
2=0£¬ËùÒÔ

£¬Í¬Àí

£¬ÓÉ´ËÄÜÇó³öËıßÐÎADBEÃæ»ýSµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©ÉèM£¨x£¬y£©£¬P£¨0£¬b£©£¬Q£¨a£¬0£©£¨a¡Ý0£©£¬Ò×Öª

£¬

£¬

£¬ÓÉÌâÉè

£¬
µÃ

ÆäÖÐa¡Ý0£¬´Ó¶ø

£¬

£¬ÇÒx¡Ý0£¬
ÓÖÓÉÒÑÖª

£¬µÃHP¡ÍPM£¬
µ±b¡Ù0ʱ£¬y¡Ù0£¬´Ëʱ

£¬µÃ

£¬
ÓÖk
PM=k
PQ£¬¹Ê

£¬

£¬¼´

£¬y
2=4x£¨x¡Ù0£©£¬
µ±b=0ʱ£¬µãPΪԵ㣬HPΪxÖᣬPMΪyÖᣬµãQҲΪԵ㣬´Ó¶øµãMҲΪԵ㣬Òò´ËµãMµÄ¹ì¼£CµÄ·½³ÌΪy
2=4x£¬Ëü±íʾÒÔÔµãΪ¶¥µã£¬ÒÔ£¨1£¬0£©Îª½¹µãµÄÅ×ÎïÏߣ» £¨4·Ö£©
£¨2£©ÓÉÌâÉ裬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬Ö±Ïßl'µÄ·½³ÌΪ

£¬£¨k¡Ù0£©£¬ÓÖÉèA£¨x
1£¬y
1£©¡¢B£¨x
2£¬y
2£©£¬
ÔòÓÉ

£¬ÏûÈ¥x£¬ÕûÀíµÃky
2-4y-4k=0£¬
¹Ê

£¬Í¬Àí|DE|=4£¨1+k
2£©£¬£¨7·Ö£©
Ôò

£¬µ±ÇÒ½öµ±k=±1ʱµÈºÅ³ÉÁ¢£¬Òò´ËËıßÐÎADBEÃæ»ýSµÄ×îСֵΪ32£®£¨9·Ö£©
£¨3£©¢Ùµ±k¡Ù0ʱ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ

£¬µÃ£¨1+2k
2£©x
2-4k
2x+2k
2-2=0£¬
¹Ê

£¬

£¬£¨12·Ö£©

£¬
µ±ÇÒ½öµ±k
2=1ʱµÈºÅ³ÉÁ¢£®£¨14·Ö£©
µ±k=0ʱ£¬Ò×Öª

£¬

£¬µÃ

£¬¹Êµ±ÇÒ½öµ±k
2=1ʱËıßÐÎADBEÃæ»ýSÓÐ×îСֵ

£®£¨15·Ö£©
¢ÚÓÉÌâÉ裬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬µ±k¡Ù0ʱ£¬ÓÉ

£¬
ÏûÈ¥x£¬ÕûÀíµÃ£¨b
2+a
2k
2£©x
2-a
2b
2=0£¬µÃ

£¬
ͬÀí

£¬£¨12·Ö£©
Ôò

£¬ÆäÖÐk
2£¾0£¬
ÈôÁîu=1+k
2£¬ÔòÓÉ

=

£¬ÆäÖÐu£¾1£¬¼´

£¬¹Êµ±ÇÒ½öµ±u=2£¬¼´k
2=1ʱ£¬vÓÐ×î´óÖµ

£¬ÓÉ

£¬µÃSÓÐ×îСֵ

£¬¹Êµ±ÇÒ½öµ±k=±1ʱ£¬ËıßÐÎADBEÃæ»ýSÓÐ×îСֵΪ

£®£¨17·Ö£©
ÓÖµ±k=0ʱ£¬|AB|=2a£¬|DE|=2b£¬´ËʱS=2ab£¬ÓÉ

£¬µÃµ±ÇÒ½öµ±k=±1ʱ£¬ËıßÐÎADBEÃæ»ýSÓÐ×îСֵΪ

£®£¨18·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮