精英家教网 > 高中数学 > 题目详情
设P为曲线C:y=ex上的点,若曲线C在点P处的切线不经过第四象限,则该切线的斜率的取值范围是
(0,e]
(0,e]
分析:欲求曲线C在点P处的切线不经过第四象限,该切线的斜率的取值范围,先设切点的坐标为( ${x_0},{e^{x_0}})$,,再求出在点切点( ${x_0},{e^{x_0}})$处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=x0处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用切线过原点即可解决问题.
解答:解:y′=ex
设切点的坐标为(x0,ex0),切线的斜率为k,
则k=ex0,故切线方程为y-ex0=ex0(x-x0
又切线过原点,∴-ex0=ex0(-x0),
∴x0=1,y0=e,k=e.
若曲线C在点P处的切线不经过第四象限,则该切线的斜率的取值范围是(0,e].
故答案为:(0,e].
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,点F与点E(-数学公式,0)关于原点O对称,M是动点,且直线EM与FM的斜率之积等于数学公式.设点M的轨迹为曲线C,经过点数学公式且斜率为k的直线l与曲线C有两个不同的交点P和Q.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)求k的取值范围;
(Ⅲ)设A数学公式,曲线C与y轴正半轴的交点为B,是否存在常数k,使得向量数学公式数学公式共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省实验中学高二(上)期末质量检测数学试卷(理科)(解析版) 题型:解答题

在平面直角坐标系xOy中,点F与点E(-,0)关于原点O对称,M是动点,且直线EM与FM的斜率之积等于.设点M的轨迹为曲线C,经过点且斜率为k的直线l与曲线C有两个不同的交点P和Q.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)求k的取值范围;
(Ⅲ)设A,曲线C与y轴正半轴的交点为B,是否存在常数k,使得向量共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,过曲线C:y=e-x上一点P(0,1)做曲线C的切线l交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:(n∈N+).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州市高三调研数学试卷(理科)(解析版) 题型:解答题

如图,过曲线C:y=e-x上一点P(0,1)做曲线C的切线l交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:(n∈N+).

查看答案和解析>>

同步练习册答案