精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,且a1=4,a8=18
(1)求数列{an}的通项公式an和前n项和Sn
(2)若等比数列{bn},其中b3=a3,b2+b4=20,求数列{bn}的通项公式bn
分析:(1)由{an}是等差数列,且a1=4,a8=18,解得d=2,由此能求出数列{an}的通项公式an和前n项和Sn
(2)由等比数列{bn},其中b3=a3,b2+b4=20,知
b1q2=2×3+2
b1q+b1q3=20
,由此求出首项和公式,从而能够求出数列{bn}的通项公式bn
解答:解:(1)∵{an}是等差数列,且a1=4,a8=18,
∴4+7d=18,解得d=2,
∴an=4+2(n-1)=2n+2,
Sn=4n+
n(n-1)
2
×2
=n2+3n.
(2)∵等比数列{bn},其中b3=a3,b2+b4=20,
b1q2=2×3+2
b1q+b1q3=20

解得
b1=32
q=
1
2
,或
b1=2
q=2

bn=32(
1
2
)n-1
,或bn=2n
点评:本题考查等比数列和等差数列的通项公式和前n项和公式的应用,是基础题.解题时要认真审题,注意熟练掌握基本概念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案