精英家教网 > 高中数学 > 题目详情
20.下列三角函数值大小比较正确的是(  )
A.sin$\frac{19π}{8}$<cos$\frac{14π}{9}$B.sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$)
C.tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$)D.tan138°>tan143°

分析 根据诱导公式,结合正弦函数和正切函数的单调性,可得答案.

解答 解:sin$\frac{19π}{8}$=sin$\frac{3π}{8}$>cos$\frac{14π}{9}$=cos$\frac{4π}{9}$=sin$\frac{π}{18}$,故A错误;
sin(-$\frac{54π}{7}$)=sin$\frac{2π}{7}$>sin(-$\frac{63π}{8}$)=sin$\frac{π}{8}$,故B错误;
tan(-$\frac{13π}{4}$)=tan$\frac{3π}{4}$>tan(-$\frac{17π}{5}$)=tan$\frac{3π}{5}$,故C正确;
tan138°<tan143°,故D错误;
故选:C.

点评 本题考查的知识点是三角函数值大小比较,正弦函数和正切函数的单调性,诱导公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.点(1,2)和(-1,m)关于kx-y+3=0对称,则m+k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos60°的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线ax+2y-2=0与直线x+(a+1)y+1=0垂直,则a=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+$\frac{π}{2}$,-2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤$\frac{11π}{12}$时,方程f(x)-m=0有两个不同的实数根α,β,试讨论α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰为$\sqrt{2}$,上底面为1的等腰梯形,则这个平面图形的面积是4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年春节期间全国流行在微信群里发、抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
频数39171182
(I)求产生的手气红包的金额不小于9元的频率;
(Ⅱ)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(III)在这50个红包组成的样本中,将频率视为概率.
(i)若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
(ii)随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将cos2x+sin2x化为Asin(x+θ)的形式,若函数f(x)=Asin(x+θ),则其值域为[-$\sqrt{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在我校进行的选修课结业考试中,所有选修“数学与逻辑”的同学都同时也选修了“阅读与表达”的课程,选修“阅读与表达”的同学都同时也选修了“数学与逻辑”的课程.选修课结业成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人,

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)现在从“数学与逻辑”科目的成绩为A和D的考生中随机抽取两人,则求抽到的两名考生都是成绩为A的考生的概率.

查看答案和解析>>

同步练习册答案