精英家教网 > 高中数学 > 题目详情
9.将cos2x+sin2x化为Asin(x+θ)的形式,若函数f(x)=Asin(x+θ),则其值域为[-$\sqrt{2}$$\sqrt{2}$].

分析 利用两角和差的正弦公式化简函数的解析式,再利用正弦函数的值域,得出结论.

解答 解:cos2x+sin2x=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cos2x+$\frac{\sqrt{2}}{2}$sin2x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)∈[-$\sqrt{2}$ $\sqrt{2}$],
故答案为:[-$\sqrt{2}$ $\sqrt{2}$].

点评 本题主要考查两角和差的正弦公式,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F分别为BC,PA的中点.
(1)求证:BF∥面PDE
(2)求点C到面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列三角函数值大小比较正确的是(  )
A.sin$\frac{19π}{8}$<cos$\frac{14π}{9}$B.sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$)
C.tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$)D.tan138°>tan143°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{y^2}{9}-\frac{x^2}{4}=1$的渐近线方程为(  )
A.$y=±\frac{9}{4}x$B.$y=±\frac{4}{9}x$C.$y=±\frac{2}{3}x$D.$y=±\frac{3}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A(2,1)和B(-1,3),若直线3x-2y-a=0与线段AB相交,则a的取值范围是(  )
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A,B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右顶点,长轴长为4,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求$λ\overrightarrow{PM}•\overrightarrow{PN}+\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F做圆x2+y2=a2的切线,切点为M,切线交y轴于点P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是$\sqrt{3}$,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn
(1)当{an}是等比数列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差数列时,求an
(2)若{an}是等差数列,且S1+a2=7,S2+a3=15,证明:对于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

查看答案和解析>>

同步练习册答案