分析 (1)$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}-1$是等差数列,得$\frac{2}{a_3}=\frac{1}{a_1}+\frac{1}{a_4}-1$,又{an}是等比数列,a1=1,设公比为q,则有$\frac{2}{q^2}=1+\frac{1}{q^3}-1$,解出即可得出.
(2)设{an}的公差距为d,由S1+a2=7,S2+a3=15得$\left\{{\begin{array}{l}{2{a_1}+d=7}\\{3{a_1}+3d=15}\end{array}}\right.$,解出可得Sn,利用“裂项求和”方法与数列的单调性即可得出.
解答 解:(1)$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}-1$是等差数列,得$\frac{2}{a_3}=\frac{1}{a_1}+\frac{1}{a_4}-1$
又{an}是等比数列,a1=1,设公比为q,则有$\frac{2}{q^2}=1+\frac{1}{q^3}-1$,即$\frac{2}{q^2}=\frac{1}{q^3}$
而q≠0,解得44$q=\frac{1}{2}$,…(4分)
故4${a_n}=1×{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^{n-1}}$…(6分)
(2)设{an}的公差距为d,由S1+a2=7,S2+a3=15,得$\left\{{\begin{array}{l}{2{a_1}+d=7}\\{3{a_1}+3d=15}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{{a_1}=2}\\{d=3}\end{array}}\right.$. …(8分)
则${S_n}=n{a_1}+\frac{n(n-1)}{2}d=\frac{3}{2}{n^2}+\frac{1}{2}n$.
于是$\frac{1}{{{S_n}+n}}=\frac{1}{{\frac{3}{2}{n^2}+\frac{3}{2}n}}=\frac{2}{3}×\frac{1}{n(n+1)}=\frac{2}{3}(\frac{1}{n}-\frac{1}{n+1})$,…(10分)
故$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}=\frac{2}{3}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$\frac{2}{3}(1-\frac{1}{n+1})<\frac{2}{3}$.…(12分)
点评 本题考查了“裂项求和法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com