精英家教网 > 高中数学 > 题目详情
2.在产品检验时,常采用抽样检查的方法.现在从100件产品(已知其中有3件不合格品)中任意抽出4件检查,恰好有2件是不合格品的抽法有13968种.(用数值作答)

分析 由题意知本题是一个组合问题,抽出的三件产品恰好有两件次品,则包括两件次品和两件正品.

解答 解:从100件产品(已知其中有3件不合格品)中任意抽出4件检查,恰好有2件是不合格品的抽法有,则包括两件次品和两件正品,
共有C32C972=13968种结果.
故答案为:13968.

点评 本题考查排列组合的实际应用,本题解题的关键是看清题目抽取的产品与顺序无关,是一个组合问题,教材中出现过类似的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知定义在(-∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(-∞,0)上是增函数;又定义行列式|$\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}$|=a1a4-a2a3; 函数g(θ)=|$\begin{array}{l}{sinθ}&{3-cosθ}\\{m}&{sinθ}\end{array}$|(其中0≤θ≤$\frac{π}{2}$).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤$\frac{π}{2}$,g(θ)>0},N={m|任意的0≤θ≤$\frac{π}{2}$,f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则实数m=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$或0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知各项皆为正数的等比数列{an}(n∈N*),满足a7=a6+2a5,若存在两项am、an使得$\sqrt{{a_m}{a_n}}$=4a1,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在实数集R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x+1
(1)求f(x)与g(x)的解析式;
(2)若定义在实数集R上的以2为最小正周期的周期函数φ(x),当-1≤x≤1时,φ(x)=f(x),试求φ(x)在闭区间[2015,2016]上的表达式,并证明φ(x)在闭区间[2015,2016]上单调递减;
(3)设h(x)=x2+2mx+m2-m+1(其中m为常数),若h(g(x))≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程kx2+4y2=4k表示焦点在x轴的椭圆,则实数k的取值范围是(  )
A.k>4B.k=4C.k<4D.0<k<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0)与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,若l为双曲线一、三象限的一条渐近线,则l的倾斜角所在的区间可能是(  )
A.$({0,\frac{π}{6}})$B.$({\frac{π}{6},\frac{π}{4}})$C.$({\frac{π}{4},\frac{π}{3}})$D.$({\frac{π}{3},\frac{π}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a>0,b>0.若$\sqrt{3}$是3a与3b的等比中项,则ab的最大值为(  )
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=ex+lnx,则此函数的图象在点(1,f(1))处的切线方程为(e+1)x-y-1=0.

查看答案和解析>>

同步练习册答案