精英家教网 > 高中数学 > 题目详情
14.已知抛物线y2=2px(p>0)与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,若l为双曲线一、三象限的一条渐近线,则l的倾斜角所在的区间可能是(  )
A.$({0,\frac{π}{6}})$B.$({\frac{π}{6},\frac{π}{4}})$C.$({\frac{π}{4},\frac{π}{3}})$D.$({\frac{π}{3},\frac{π}{2}})$

分析 根据抛物线和双曲线有相同的焦点求得p和c的关系,根据AF⊥x轴可判断出|AF|的值和A的坐标,代入双曲线方程与p=2c,b2=c2-a2联立求得a和c的关系式,然后求得离心率e,即可得出结论.

解答 解:∵抛物线的焦点和双曲线的焦点相同,
∴p=2c
∵A是它们的一个公共点,且AF垂直x轴,
设A点的纵坐标大于0,
∴|AF|=p,
∴A($\frac{p}{2}$,p),
∵点A在双曲线上,
∴$\frac{{p}^{2}}{4{a}^{2}}-\frac{{p}^{2}}{{b}^{2}}$=1,
∵p=2c,b2=c2-a2
∴$\frac{{c}^{2}}{{a}^{2}}-\frac{4{c}^{2}}{{c}^{2}-{a}^{2}}$=1,
化简得:c4-6c2a2+a4=0,
∴e4-6e2+1=0,
∵e2>1,
∴e2=3+2$\sqrt{2}$,
∴1+($\frac{b}{a}$)2=3+2$\sqrt{2}$
∴($\frac{b}{a}$)2=2+2$\sqrt{2}$>3
∴l的倾斜角所在的区间可能是($\frac{π}{3}$,$\frac{π}{2}$),
故选:D.

点评 本题主要考查关于双曲线的离心率的问题,属于中档题,本题利用焦点三角形中的边角关系,得出a、c的关系,从而求出离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,下列物体的正视图和俯视图中有错误的一项是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z满足z+|z|=2+8i,其中i为虚数单位,则|z|=17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在产品检验时,常采用抽样检查的方法.现在从100件产品(已知其中有3件不合格品)中任意抽出4件检查,恰好有2件是不合格品的抽法有13968种.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,对于点P(x0,y0)、直线l:ax+by+c=0,我们称$δ=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$为点P(x0,y0)到直线l:ax+by+c=0的方向距离.
(1)设椭圆$\frac{x^2}{4}+{y^2}=1$上的任意一点P(x,y)到直线l1:x-2y=0,l2:x+2y=0的方向距离分别为δ1、δ2,求δ1δ2的取值范围.
(2)设点E(-t,0)、F(t,0)到直线l:xcosα+2ysinα-2=0的方向距离分别为η1、η2,试问是否存在实数t,对任意的α都有η1η2=1成立?若存在,求出t的值;不存在,说明理由.
(3)已知直线l:mx-y+n=0和椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),设椭圆E的两个焦点F1,F2到直线l的方向距离分别为λ1、λ2满足${λ_1}{λ_2}>{b^2}$,且直线l与x轴的交点为A、与y轴的交点为B,试比较|AB|的长与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为$\frac{1}{90}{x^2}$升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟$\frac{1}{2}x$米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.
(1)将y表示为x的函数;
(1)若x∈[4,8],求总用氧量y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,AB为定圆O的直径,点P为半圆AB上的动点.过点P作AB的垂线,垂足为Q,过Q作OP的垂线,垂足为M.记弧AP的长为x,线段QM的长为y,则函数y=f(x)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A.y=x+x3B.y=3xC.y=log2xD.$y=-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.C${\;}_{n}^{1}$+3C${\;}_{n}^{2}$+9C${\;}_{n}^{3}$+…+3n-1C${\;}_{n}^{n}$=$\frac{1}{3}$(4n-1).

查看答案和解析>>

同步练习册答案