精英家教网 > 高中数学 > 题目详情
5.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,则13+23+33+43+53+63=212

分析 观察已知等式得到一般性规律,即可确定出所求式子的值.

解答 解:由题意,13+23+33+43+53+…+n3=(1+2+…+n)2,所以13+23+33+43+53+63=212
故答案为:212

点评 此题考查了有理数的乘方,本题的规律为13+23+33+43+53+…+n3=(1+2+…+n)2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.观察下列等式,按此规律,第n个等式的右边等于3n2-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等差数列{an}中,已知a1+a2=5,a4+a5=23,则该数列的前10项的和S10=145.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ax2-$\sqrt{2}$(a>0),且f($\sqrt{2}$)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
x(℃)300400500600700800
y(%)405055606770
(1)画出散点图;
(2)指出x,y是否线性相关;若线性相关,求y关于x的回归方程;
(3)估计水温度是1 000℃时,黄酮延长性的情况.(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若△ABC的面积为$2\sqrt{3}$,BC=2,C=120°,则边AB=$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)计算:${8^{\frac{2}{3}}}-\sqrt{{{(\sqrt{2}-1)}^2}}+{2^{\frac{1}{2}}}+{({\frac{1}{3}})^0}-lg100$.
(Ⅱ)已知a>0,且a-a-1=3,求值:a2+a-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是(  )
A.3x-y+2=0B.3x+y+2=0C.x+3y+2=0D.x-3y-2=0

查看答案和解析>>

同步练习册答案