精英家教网 > 高中数学 > 题目详情
11.观察下列等式,按此规律,第n个等式的右边等于3n2-2n.

分析 由图知,第n个等式左边是n个奇数的和,第一个奇数是2n-1,由等差数列的求和公式计算出第n个等式的和,即可得结果.

解答 解:由图知,第n个等式的等式左边第一个奇数是2n-1,故n个连续奇数的和
故有n×$\frac{2n-1+2n-1+2(n-1)}{2}$=n×(3n-2)=3n2-2n.
故答案为3n2-2n.

点评 本题考查归纳推理,解题的关键是归纳出规律:第n个等式左边是n个奇数的和,第一个奇数是2n-1,这此奇数组成一个公式差为2的等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.使不等式a2+b2+2>λ(a+b)对任意的正数a,b恒成立的实数λ的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C1:y2=2px(p>0)与双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)有公共焦点F,且在第一象限的交点为P(3,2$\sqrt{6}$).
(1)求抛物线C1,双曲线C2的方程;
(2)过点F且互相垂直的两动直线被抛物线C1截得的弦分别为AB,CD,弦AB、CD的中点分别为G、H,探究直线GH是否过定点,若GH过定点,求出定点坐标;若直线GH不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N(异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.
(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;
(2)当θ为何值时,l(θ)有最大值?并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤1\end{array}\right.$,则z=3x-y的最大值为(  )
A.-5B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为$4+2\sqrt{3}$,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,则13+23+33+43+53+63=212

查看答案和解析>>

同步练习册答案