·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄÀëÐÄÂʼ°¡÷PF1F2µÄÖܳ¤Çó³öa¡¢b¼´¿É£»
£¨¢ò£©ÓÉÒÑÖªÇó³öMNµÄ³¤¶È£¬È»ºó£¬ÓÉÖ±ÏߺÍÔ²ÏàÇеõ½m£¬kµÄ¹ØÏµ£¬ÔÙÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬Çó³öA£¬BµÄºá×ø±ê£¬´úÈëËıßÐÎÃæ»ý¹«Ê½£¬ÀûÓûù±¾²»µÈʽÇóµÃ×îÖµ£¬²¢µÃµ½Ê¹ËıßÐÎACBDµÄÃæ»ýÓÐ×î´óֵʱµÄm£¬kµÄÖµ£¬´Ó¶øµÃµ½Ö±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨ I£©ÉèÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$£¬ÓÉÌâ¿ÉÖª$\left\{{\begin{array}{l}{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\\{2£¨a+c£©=4+2\sqrt{3}}\end{array}}\right.$£¬--£¨2·Ö£©
½âµÃ$a=2£¬c=\sqrt{3}£¬b=1$£¬-----------------------£¨3·Ö£©
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®-----------------------£¨4·Ö£©
£¨ II£©Áî$x=\sqrt{3}$£¬½âµÃ$y=¡À\frac{1}{2}$£¬ËùÒÔ|MN|=1£¬-----------------------£¨5·Ö£©
Ö±ÏßlÓëÔ²x2+y2=1ÏàÇпɵÃ$\frac{|m|}{{\sqrt{1+{k^2}}}}=1$£¬¼´k2+1=m2£¬-----------------------£¨6·Ö£©
ÁªÁ¢Ö±ÏßÓëÍÖÔ²µÄ·½³Ì£¬ÕûÀíµÃ£¨1+4k2£©x2+8kmx+4m2-4=0-----------£¨7·Ö£©
ËùÒÔ${S_{MANB}}=\frac{1}{2}|{MN}||{{x_1}-{x_2}}|=\frac{1}{2}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\frac{{2\sqrt{1+4{k^2}-{m^2}}}}{{1+4{k^2}}}$----£¨9·Ö£©
½«k2+1=m2´úÈë¿ÉµÃ${S_{MANB}}=\frac{{2\sqrt{3}|k|}}{{1+4{k^2}}}=\frac{{2\sqrt{3}}}{{\frac{1}{|k|}+4|k|}}¡Ü\frac{{\sqrt{3}}}{2}$£®------------------£¨11·Ö£©
µ±ÇÒ½öµ±$\frac{1}{|k|}=4|k|$£¬¼´$k=¡À\frac{1}{2}$ʱ£¬µÈºÅ³ÉÁ¢£¬´Ëʱ$m=¡À\frac{{\sqrt{5}}}{2}$£®------------------£¨12·Ö£©
ËùÒÔ£¬µ±$k=¡À\frac{1}{2}$ʱ£¬ËıßÐÎMANBµÄÃæ»ý¾ßÓÐ×î´óÖµ$\frac{{\sqrt{3}}}{2}$£¬Ö±Ïßl·½³ÌÊÇ$y=\frac{1}{2}x-\frac{{\sqrt{5}}}{2}$»ò$y=-\frac{1}{2}x+\frac{{\sqrt{5}}}{2}$£®-----------------------£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÔ²¡¢Ô²ÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬ÊôÖеµÌâ
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | -1 | D£® | -2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{2\sqrt{3}}}{3}$ | B£® | $\frac{{\sqrt{3}}}{3}$ | C£® | 3 | D£® | $2\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com