精英家教网 > 高中数学 > 题目详情
6.设Sn为数列{an}的前n项和,且S3=7,a1+3,a3+4的等差中项为3a2
(1)求a2
(2)若{an}是等比数列,求an

分析 (1)利用已知条件建立方程组,求解健康得答案;
(2)设数列{an}的公比为q,由a2=2,可得首项与公比,即可求得数列{an}的通项公式.

解答 解:(1)由已知得:$\left\{\begin{array}{l}{{a}_{1}+{a}_{2}+{a}_{3}=7}\\{\frac{({a}_{1}+3)+({a}_{3}+4)}{2}=3{a}_{2}}\end{array}\right.$,
解得a2=2;
(2)设数列{an}的公比为q,由a2=2,可得${a_1}=\frac{2}{q},{a_3}=2q$.
又S3=7,可知$\frac{2}{q}$+2+2q=7,∴2q2-5q+2=0,解得${q}_{1}=\frac{1}{2}$,q2=2.
①若${q}_{1}=\frac{1}{2}$,∴a1=4,
则${a}_{n}=4×(\frac{1}{2})^{n-1}=(\frac{1}{2})^{n-3}$.
②若q2=2,∴a1=1,
则${a_n}={2^{n-1}}$.

点评 本题考查了等差数列、等比数列的概念及其性质,考查了学生的运算能力和思维能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.将下列函数配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x(x∈N*)台的收入函数为R(x)=3000x+ax2(单位:元),其成本函数为C(x)=kx+4000(单位:元),利润是收入与成本之差.当生产10台时,成本为9000元,利润为19000元.
(1)求利润函数P(x)及边际利润函数MP(x);
(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意x∈R*,不等式lnx≤ax恒成立,则实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$]D.[e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式a2+b2+2>λ(a+b)对任意的正数a,b恒成立的实数λ的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆的一般方程为x2+y2-2x+4y=0,则该圆的半径长为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以点M(0,2)为圆心,并且与x轴相切的圆的方程为x2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆具有性质:若M,N是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0且a,b为常数)上关于y轴对称的两点,P是椭圆上的左顶点,且直线PM,PN的斜率都存在(记为kPM,kPN),则kPM•kPN=$\frac{{b}^{2}}{{a}^{2}}$.类比上述性质,可以得到双曲线的一个性质,并根据这个性质得:若M,N是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上关于y轴对称的两点,P是双曲线C的左顶点,直线PM,PN的斜率都存在(记为kPM,kPN),双曲线的离心率e=$\sqrt{5}$,则kPM•kPN等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为$4+2\sqrt{3}$,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.

查看答案和解析>>

同步练习册答案