9£®ÕýÏîÊýÁÐ{an}Âú×㣺a1=2£¬a2=1£¬ÇÒ$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n}{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$£¨n¡Ý2£©£¬Ôò´ËÊýÁеĵÚ2 016ÏîΪ£¨¡¡¡¡£©
A£®$\frac{1}{{2}^{2015}}$B£®$\frac{1}{{2}^{2016}}$C£®$\frac{1}{2016}$D£®$\frac{1}{1008}$

·ÖÎö ÓÉ$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n}{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$£¨n¡Ý2£©£¬¿ÉÖª£º$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$£¬ÔÙÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÓÉ$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n}{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$£¨n¡Ý2£©£¬¿ÉÖª£º$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$£¬
¹ÊÊýÁÐ$\{\frac{1}{{a}_{n}}\}$ΪµÈ²îÊýÁУ¬ÓÚÊÇ$\frac{1}{{a}_{n}}$=$\frac{1}{2}$+£¨n-1£©¡Á$\frac{1}{2}$=$\frac{n}{2}$£¬
ËùÒÔan=$\frac{2}{n}$£¬ÓÚÊÇa2016=$\frac{1}{1008}$£¬
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{3}$=1£¨a£¾$\sqrt{3}$£©µÄÓÒ½¹µãΪF£¬ÓÒ¶¥µãΪM£¬ÇÒ$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$£¬£¨ÆäÖÐOΪԭµã£©£¬eΪÍÖÔ²µÄÀëÐÄÂÊ£®
£¨1£©ÇóÍÖÔ²C·½³Ì£»
£¨2£©Èô¹ýµãFµÄÖ±ÏßlÓëCÏཻÓÚA£¬BÁ½µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹µÃ$\overrightarrow{NA}$•$\overrightarrow{NB}$Ϊ¶¨Öµ£¿Èç¹ûÓУ¬Çó³öµãNµÄ×ø±ê¼°ÏàÓ¦¶¨Öµ£»Èç¹ûûÓУ¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}ÖУ¬a1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ¬ÇÒ¸ÃÊýÁеÄǰ10ÏîºÍΪ100£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»   
£¨2£©Èôbn=an-10£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Éèm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊÇÈý¸ö²»Í¬µÄÆ½Ãæ£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÈôm¡Í¦Á£¬n¡Î¦Á£¬Ôòm¡Ín£»
¢ÚÈô¦Á¡Î¦Â£¬¦Â¡Î¦Ã£¬m¡Í¦Á£¬Ôòm¡Í¦Ã£»
¢ÛÈôm¡Î¦Á£¬n¡Î¦Â£¬¦Á¡Î¦Â£¬Ôòm¡În£»
¢ÜÈô¦Á¡Í¦Ã£¬¦Â¡Í¦Ã£¬Ôò¦Á¡Î¦Â£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ù¢Ú£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¹ØÓÚ¿Õ¼äÖ±½Ç×ø±êϵO-xyzÖеÄÒ»µãP£¨1£¬2£¬3£©£¬ÓÐÏÂÁÐ˵·¨£º
¢ÙµãPµ½×ø±êÔ­µãµÄ¾àÀëΪ$\sqrt{13}$£»
¢ÚOPµÄÖеã×ø±êΪ£¨$\frac{1}{2}£¬1£¬\frac{3}{2}$£©£»
¢ÛµãP¹ØÓÚxÖá¶Ô³ÆµÄµãµÄ×ø±êΪ£¨-1£¬-2£¬-3£©£»
¢ÜµãP¹ØÓÚ×ø±êÔ­µã¶Ô³ÆµÄµãµÄ×ø±êΪ£¨1£¬2£¬-3£©£»
¢ÝµãP¹ØÓÚ×ø±êÆ½ÃæxOy¶Ô³ÆµÄµãµÄ×ø±êΪ£¨1£¬2£¬-3£©£®
ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐ˵·¨ÖУ¬Õýȷ˵·¨µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙÃüÌâ¡°Èôx2-3x+2=0£¬Ôòx=1¡±µÄÄæ·ñÃüÌâΪ£º¡°Èôx¡Ù1£¬Ôòx2-3x+2¡Ù0¡±£»
¢Ú¡°x£¾1¡±ÊÇ¡°|x|£¾1¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢Û¼¯ºÏA={1}£¬B={x|ax-1=0}£¬ÈôB⊆A£¬ÔòʵÊýaµÄËùÓпÉÄÜȡֵ¹¹³ÉµÄ¼¯ºÏΪ{1}£®
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¡÷ABCµÄÈý±ßa£¬b£¬cµÄµ¹Êý³ÉµÈ±ÈÊýÁУ¬ÇóÖ¤£ºB£¼$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©=3£¬ÇÒ|$\overrightarrow{a}$|=1£¬$\overrightarrow{b}$=£¨1£¬1£©£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ135¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôa2£¾b2£¬Ôò|a|£¾b£»¢ÚÈô|a|£¾b£¬Ôòa2£¾b2£»
¢ÛÈôa£¾|b|£¬Ôòa2£¾b2£»¢ÜÈôa2£¾b2£¬Ôòa£¾|b|£®
ÆäÖÐÒ»¶¨ÕýÈ·µÄÃüÌâΪ£¨¡¡¡¡£©
A£®¢Ú¢ÜB£®¢Ù¢ÛC£®¢Ù¢ÚD£®¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸