精英家教网 > 高中数学 > 题目详情
在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,∠BAD=60°,P为AB的中点,Q为CD1的中点.
(1)求证:DP⊥平面A1ABB1
(2)求证:PQ∥平面ADD1A1
分析:(1)利用菱形和等边三角形的性质、线面垂直的判定定理即可证明;
(2)利用三角形的中位线定理、平行四边形的性质、线面、面面平行的判定与性质定理即可证明.
解答:证明:(1)连接DB,由菱形ABCD可得AB=AD,又∠DAB=60°,∴△ABD是等边三角形,
∵P为AB的中点,∴DP⊥AB.
∵AA1⊥平面ABCD,∴AA1⊥DP.
又AA1∩AB=A,∴DP⊥平面A1ABB1
(2)取CD的中点E,连接PE,EQ,又Q为CD1的中点,根据三角形的中位线定理可得EQ∥DD1
∵EQ?平面ADD1A1.DD1?平面ADD1A1
∴EQ∥平面ADD1A1
由于平行四边形APED可得EP∥AD,同理可得EP∥平面ADD1A1
∵EP∩EQ=E,∴平面EPQ∥平面ADD1A1.∴PQ∥平面ADD1A1
点评:熟练掌握菱形和等边三角形的性质、线面垂直的判定定理、三角形的中位线定理、平行四边形的性质、线面、面面平行的判定与性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

顶点在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=
2
,则A、C两点间的球面距离为(  )
A、
π
4
B、
π
2
C、
2
π 
4
D、
2
π 
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱与底面垂直,E,F分别是AB1,BC1的中点,则以下结论中不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正四棱柱ABCD-A′B′C′D′中,底面边长为2,侧棱长为3,E为BC的中点,FG分别为CC′、DD′上的点,且CF=2GD=2.求:
(Ⅰ)C′到面EFG的距离;
(Ⅱ)DA与面EFG所成的角的正弦值;
(III)在直线BB'上是否存在点P,使得DP∥面EFG?,若存在,找出点P的位置,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在高为1的直四棱柱ABCD-A'B'C'D'中,底面ABCD是等腰梯形,AB=BC=CD=1,AD=2. 
(1)求异面直线BC'与CD'所成的角;
(2)求被截面ACD'所截的两部分几何体的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各个面都是平行四边形的四棱柱ABCD-A′B′C′D′
(1)化简
1
2
AA′
+
BC
+
2
3
AB
,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN:NC′=3:1,设
MN
AB
AD
AA′
,试求α,β,γ的值.

查看答案和解析>>

同步练习册答案