精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)求三棱锥P-AB1C与三棱锥C1-AB1P的体积之比;
(II)当k为何值时,直线PA⊥B1C.
分析:(I)B1P是三棱锥B1-PAC的高,B1P是三棱锥B1-PAC的高,
利用VP-AB1C=VB1-PAC=
1
3
S△PACB1P
以及
VC1-AB1P=VA-B1PC1=
1
3
SB1PC1•AA1
求三棱锥P-AB1C与三棱锥C1-AB1P的体积之比;
(II)证明k=1,AP⊥面B1PC,推出直线PA⊥B1C.
解答:解:精英家教网
(I)由B1P⊥面A1C,
得B1P是三棱锥B1-PAC的高,
又∵AA1⊥面A1B1C1,∴AA1是三棱锥A-B1PC1的高.VP-AB1C=VB1-PAC=
1
3
S△PACB1P
(2分)VC1-AB1P=VA-B1PC1=
1
3
SB1PC1•AA1
(4分)
VP-AB1C
VC1-AB1P
=
1
3
S△APCB1P
1
3
SB1PC1•AA1
=
AC
PC1
=2

所以三棱锥P-AB1C与三棱锥C1-AB1P的体积之比是2.(6分)
(II)要使直线AP⊥B1C,
只需AP⊥面B1PC.
因为B1P⊥面A1C,
所以B1P⊥AP.
所以只需PA⊥PC.(9分)∵PA=PC,所以只需PA=
2
AC

AC=
2
AB,AB=BC=kPA
,∴k=1.(11分)
反知,当k=1时,AP⊥面B1PC,
所以AP⊥B1C成立.(11分)
点评:本题考查棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系,考查空间想象能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案