分析 (1)首先给顶点P选色,有5种结果,再给A选色有4种结果,再给B选色有3种结果,最后分两种情况即C与A同色与C与A不同色来讨论,根据分步计数原理和分类计数原理得到结果.
(2)四棱锥S-ABCD的顶点S、A、B所染色互不相同,则A、C可以颜色相同,B、D可以颜色相同,并且两组中必有一组颜色相同.所以,先从两组中选出一组涂同一颜色,有2种选法(如:B、D颜色相同);再从5种颜色中,选出四种颜色涂在S、A、B、C四个顶点上.
解答 解:(1)四棱锥为P-ABCD.底面对角线的端点同色的染色方法 P:C51,A:C41,B:C31,
故共有C51•C41•C31•C31 种.
由分步计数原理可得不同的染色方法总数有:C51•C41•C31=60.
(2)由题意知,四棱锥S-ABCD的顶点S、A、B所染色互不相同,则A、C可以颜色相同,B、D可以颜色相同,并且两组中必有一组颜色相同.所以,先从两组中选出一组涂同一颜色,有2种选法(如:B、D颜色相同);再从5种颜色中,选出四种颜色涂在S、A、B、C四个顶点上,有5×4×3×2=120(种)涂法;根据分步乘法计数原理,共有2×120=240(种)不同的涂法.
点评 本题主要排列与组合及两个基本原理,总结此类问题的做法,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<3} | B. | {x|0≤x<1} | C. | {x|-3<x<0} | D. | {x|0<x<1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com