(满分14分)一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.
(1)如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?
(2)如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
|
[来源:学#科#网Z#X#X#K]
(1)18 (2)![]()
(1)如图1,先对a1部分种植,有3种不同的种法,再对a2、a3种植,
因为a2、a3与
a1不同颜色,a2、a3也不同.
所以S(3)=3×2=6(种)……………3分
如图2,S(4)=3×2×2×2-S(3)=18(种) ……………………………6分
(2)如图3,圆环分为n等份,对a1有3种不同的种法,对a2、a3、…、an都有两种不同的种法,但这样的种法只能保证a1与ai(i
=2、3、……、n-1)不同颜色,但不能保证a1与an不同颜色.
………………………………8
分
于是一类是an与a1不同色的种法,这是符合要求的种法,记为
种.另一类是an与a1同色的种法,这时可以把an与a1看成一部分,这样的种法相当于对n-1部分符合要求的种法,记为
.
共有3×2n-1种种法. ………………………………10分
这样就有
.即
,
则数列
是首项为
公比为-1的等比数列.
则![]()
由⑴知:
,∴
.
∴
. ………………………………13分[来源:学*科*网]
答:符合要求的不同种法有
…………………14分
科目:高中数学 来源:2012-2013学年上海市徐汇区高三上学期期末考试理科数学试卷(解析版) 题型:解答题
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)某种型号汽车四个轮胎半径相同,均为
,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为
(假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路
(如图(1)所示,其中
(
)),且前轮
已在
段上时,后轮中心在
位置;若前轮中心到达
处时,后轮中心在
处(假定该汽车能顺利驶上该上坡路). 设前轮中心在
和
处时与地面的接触点分别为
和
,且
,
. (其它因素忽略不计)
![]()
(1)如图(2)所示,
和
的延长线交于点
,
求证:
(cm);
![]()
(2)当
=
时,后轮中心从
处移动到
处实际移动了多少厘米? (精确到1cm)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三第二次教学质量考试数学理卷 题型:解答题
(本题满分14分)
如图1,在平面内,ABCD是
的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
![]()
(Ⅰ) 设二面角E – AC – D1的大小为q,若
£ q £
,求线段BE长的取值范围;
(Ⅱ)在线段
上存在点
,使平面
平面
,求
与BE之间满足的关系式,并证明:当0 < BE < a时,恒有
<
1.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分) 现有一个放有9个球的袋子,其中红球4个,白球3个,黄球2个,并且这些球除颜色外完全相同.
(Ⅰ) 现从袋子里任意摸出3个球,求其中有两球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有两球同色为止,求摸球次数
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
如图,在一条笔直的高速公路
的同旁有两个城镇
,它们与
的距离分别是
与
,
在
上的射影
之间距离为
,现计划修普通公路把这两个城镇与高速公路相连接,若普通公路造价为
万元/
;而每个与高速公路连接的立交出入口修建费用为
万元.设计部门提交了以下三种修路方案:
方案①:两城镇各修一条普通公路到高速公路,并各修一个立交出入口;
方案②:两城镇各修一条普通公路到高速公路上某一点
,并
在
点修一个公共立交出入口;
方案③:从
修一条普通公路到
,再从
修一条普通公路到
高速公路,也只修一个立交出入口.
请你为这两个城镇选择一个省钱的修路方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
如图1,在平面内,ABCD是
的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
(Ⅰ) 设二面角E – AC – D1的大小为q,若
£ q £
,求线段BE长的取值范围;
![]()
(第20题–1)
![]()
(第20题–2)
(Ⅱ)在线段
上存在点
,使平面
平面
,求
与BE之间满足的关系式,并证明:当0 < BE < a时,恒有
< 1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com