精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式-数学公式=1的离心率e>1+数学公式,左、右焦点分别为F1、F2,左准线为l,能否在双曲线的左支上找一点P,使得|PF1|是P到l的距离d与|PF2|的等比中项?

解:设在左支上存在P点,使|PF1|2=|PF2|•d,由双曲线的第二定义知
==e,即|PF2|=e|PF1|①
再由双曲线的第一定义,得|PF2|-|PF1|=2a.②
由①②,解得|PF1|=,|PF2|=
∵|PF1|+|PF2|≥|F1F2|,
+≥2c.③
利用e=,由③得e2-2e-1≤0,
解得1-≤e≤1+
∵e>1,
∴1<e≤1+与已知e>1+矛盾.
∴在双曲线左支上找不到点P,使得|PF1|是P到l的距离d与|PF2|的等比中项.
分析:设左支上存在P点,由双曲线的第二定义知|PF2|=e|PF1|,再由双曲线的第一定义,得|PF2|-|PF1|=2a由此推导出e2-2e-1≤0,解得1<e≤1+与已知e>1+矛盾.从而断定在双曲线左支上找不到点P,使得|PF1|是P到l的距离d与|PF2|的等比中项.
点评:本题是双曲线的综合题,综合利用双曲线的第一定义和第二定义求解,在解题时要注意反证法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线-=1的离心率e>1+,左、右焦点分别为F1、F2,左准线为l,能否在双曲线的左支上找到一点P,使得|PF1|是P到l的距离d与|PF2|的等比中项?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1的离心率为,则双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1的离心率为,则双曲线的渐近线方程为____________.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练19练习卷(解析版) 题型:填空题

已知双曲线-=1的离心率为2,焦点与椭圆+=1的焦点相同,那么双曲线的焦点坐标为    ;渐近线方程为    .

 

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市英山一中高三摸底数学试卷(解析版) 题型:解答题

已知双曲线=1的离心率为,则n=   

查看答案和解析>>

同步练习册答案