精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.
分析:(1)求出原函数的定义域,求出函数的导函数,由导函数的零点把定义域分段,根据导函数的符号得原函数的单调区间;
(2)把原函数求导后直接得到斜率的表达式,代入k≤
1
2
后把参数a分离出来,然后利用二次函数求最值得到实数a的最小值;
(3)把f(x)=lnx+
a
x
代入f(x)=
x3+2(bx+a)
2x
-
1
2
,整理后得b=lnx-
1
2
x2+
1
2
,讨论原方程的根的情况,即讨论方程b=lnx-
1
2
x2+
1
2
的根的情况,引入辅助函数h(x)=lnx-
1
2
x2-b+
1
2
,求导得到函数在(0,+∞)上的最大值,由最大值大于0,等于0,小于0分析b的取值情况.
解答:解:(Ⅰ)函数f(x)=lnx+
a
x
(a>0)的定义域为(0,+∞),
f(x)=
1
x
-
a
x2
=
x-a
x2

因为a>0,由f(x)>0得x∈(a,+∞),由f(x)<0得x∈(0,a),
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
(Ⅱ)由题意,以P(x0,y0)为切点的切线的斜率k满足
k=f(x0)=
x0-a
x02
1
2
(x0>0),
所以a≥-
1
2
x02+x0
对x0>0恒成立.
又当x0>0时,-
1
2
x02+x0=-
1
2
(x0-1)2+
1
2
1
2

所以a的最小值为
1
2

(Ⅲ)由f(x)=
x3+2(bx+a)
2x
-
1
2
,即lnx+
a
x
=
x3+2(bx+a)
2x
-
1
2

化简得b=lnx-
1
2
x2+
1
2
(x∈(0,+∞)).
h(x)=lnx-
1
2
x2-b+
1
2
,则h(x)=
1
x
-x=
(1+x)(1-x)
x

当x∈(0,1)时,h(x)>0,
当x∈(1,+∞)时,h(x)<0,
所以h(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.
所以h(x)在x=1处取得极大值即最大值,最大值为h(1)=ln1-
1
2
×12-b+
1
2
=-b

所以 
 当-b>0,即b<0时,y=h(x) 的图象与x轴恰有两个交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有两个实根,
当b=0时,y=h(x) 的图象与x轴恰有一个交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有一个实根,
当b>0时,y=h(x) 的图象与x轴无交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
无实根.
点评:本题考查了利用导数研究函数的单调性,考查了导数在求最值中的应用,训练了分离变量法求参数的取值范围,考查了数学转化思想和分类讨论的数学思想,属难度稍大的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案