精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(Ⅰ)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前n项和Tn
(Ⅱ)若数列{cn}满足cn=a2n,试判断cn是否为等比数列,并说明理由;
(Ⅲ)当p=
1
2
时,问是否存在n∈N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,请说明理由.
分析:(1)由已知中bn=a2n+a2n+1(n≥1),结合an+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)
.可得数列是一个等差数列,求出其通项公式后,进一步可得数列{bn}前n项和Tn
(Ⅱ)当p=
1
2
时,我们易得数列{cn}是一个等比数列,但是当p≠
1
2
时,数列{cn}不为等比数列,根据等比数列的定义,代入易验证结论.
(III)根据(I)、(II)的结论,我们可以根据(S2n+1-10)c2n=1,构造一个关于n的方程,利用导数法,我们可以求出方程的根,即可得到结论.
解答:解:(Ⅰ)据题意得bn=a2n+a2n+1=a2n-a2n-2×2n=-4n,所以{bn}成等差数列,故Tn=-2n2-2n(4分)
(Ⅱ)当p=
1
2
时,数列{cn}成等比数列;当p≠
1
2
时,数列{cn}不为等比数列
理由如下:因为cn+1=a2n+2=pa2n+1+2n=p(-a2n-4n)+2n=-pcn-4pn+2n,
所以
cn+1
cn
=-p+
2n(1-2p)
cn
,故当p=
1
2
时,数列cn是首项为1,公比为-
1
2
等比数列;
p≠
1
2
时,数列{cn}不成等比数列(9分)
(Ⅲ)当p=
1
2

时,a2n=cn=(-
1
2
)n-1
a2n+1=bn-a2n=-4n-(-
1
2
)n-1
(10分)
因为S2n+1=a1+b1+b2+…+bn=-2n2-2n+2(n≥1)(12分)
∵(S2n+1-10)c2n=1,
∴4n2+4n+16=4n,设f(x)=4x-4x2-4x-16(x≥2),
则g(x)=f'(x)=4xln4-8x-4,
∴g'(x)=(ln4)24x-8>0(x≥2),且g(2)=f'(2)>0,
∴f(x)在[2,+∞)递增,且f(3)=0,f(1)≠0,
∴仅存在惟一的n=3使得(S2n+1-10)c2n=1成立(16分)
点评:本题考查的知识点是等比关系的确定,数列的求和,其中熟练掌握等差数列、等比数列的定义,能熟练的判断一个数列是否为等差(比)数列是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案