精英家教网 > 高中数学 > 题目详情
已知f(n)=1+,经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,推测当n≥2时,有f(2n)>   
【答案】分析:根据已知中的等式:,f(4)>2,,f(16)>3,…,我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案.
解答:解:观察已知中等式:

f(4)>2,

f(16)>3,
…,
则f(2n)≥(n∈N*
故答案为:f(2n)≥(n∈N*
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知f(n)=1+3+5+…+(2n-5),且n是大于2的正整数,则f(10)=
64

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
23
+
1
33
+
1
43
+…+
1
n3
,g(n)=
3
2
-
1
2n2
,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用数学归纳法证明不等式f(2n)>
n
2
时,f(2k+1)比f(2k)多的项数是
2k
2k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+,n≥2),经计算得f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,由此可推得一般性结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+)

经计算得f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通过观察,我们可以得到一个一般性的结论.
(1)试写出这个一般性的结论;
(2)请证明这个一般性的结论;
(3)对任一给定的正整数a,试问是否存在正整数m,使得1+
1
2
+
1
3
+…+
1
m
>a
?若存在,请给出符合条件的正整数m的一个值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案