ÔÚÆ½ÃæÖ±½Ç×ø±êϵx0yÖУ¬ÒÑÖªÒÔOΪԲÐĵÄÔ²ÓëÖ±Ïßl£ºy=mx+£¨3-4m£©£¨m¡ÊR£©ºãÓй«¹²µã£¬ÇÒÒªÇóʹԲOµÄÃæ»ý×îС£®
£¨1£©Ö¤Ã÷Ö±Ïß¹ý¶¨µãM£¬Çó³ö´ËµãµÄ×ø±ê¼°Ô²OµÄ·½³Ì£»
£¨2£©ÒÑÖª¶¨µãQ£¨-4£¬3£©£¬Ö±ÏßlÓëÔ²O½»ÓÚM¡¢NÁ½µã£¬ÊÔÅжÏ×tan¡ÏMQNÊÇ·ñÓÐ×î´óÖµ£¬Èô´æÔÚÇó³ö×î´óÖµ£¬²¢Çó³ö´ËʱֱÏßlµÄ·½³Ì£¬Èô²»´æÔÚ£¬¸ø³öÀíÓÉ£®
£¨3£©Ô²OÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬Ô²ÄÚ¶¯µãPʹ||¡¢||¡¢||³ÉµÈ±ÈÊýÁУ¬ÇóµÄ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÒÀÌâÒâ¿ÉÖªÖ±Ïß¹ý¶¨µã£¬ÒªÇóʹԲOµÄÃæ»ý×îС£¬Ôò¶¨µãÔÚÔ²ÉÏ£¬Çó³ö°ë¾¶¼´¿ÉÇóÔ²µÄ·½³Ì£»
£¨2£©ÀûÓÃ×tan¡ÏMQN£¬¿ÉµÃµ½µÈ¼Û¹ØÏµ¼´Èý½ÇÐÎÃæ»ý£¬ÈÝÒ×È·¶¨Ô²Éϵĵ㵽ÒÑÖªÏ߶εÄ×î´ó¾àÀ룬¿ÉÇó³öÖ±ÏßlµÄ·½³Ì£»
£¨3£©Çó³öA¡¢BÁ½µãµÄ×ø±ê£¬ÉèPµÄ×ø±ê£¬ÀûÓÃ||¡¢||¡¢||³ÉµÈ±ÈÊýÁУ¬µÃµ½ÏàµÈ¹ØÏµÊ½£¬PÔÚÔ²ÄÚ£¬µÃµ½²»µÈʽ£¬´Ó¶ø¿ÉÇóÊýÁ¿»ýµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©ÒòΪֱÏßl£ºy=mx+£¨3-4m£©¹ý¶¨µãT£¨4£¬3£©
ÓÉÌâÒ⣬ҪʹԲOµÄÃæ»ý×îС£¬¶¨µãT£¨4£¬3£©ÔÚÔ²ÉÏ£¬ËùÒÔÔ²OµÄ·½³ÌΪx2+y2=25£»
£¨2£©´æÔÚÖ±Ïß·½³Ì2x-y-5=0£¬·ûºÏÌâÒ⣬ÀíÓÉÈçÏÂ
×tan¡ÏMQN=×sin¡ÏMQN=2S¡÷MQN
ÓÉÌâÒ⣬µÃÖ±ÏßlÓëÔ²OµÄÒ»¸ö½»µãΪM£¨4£¬3£©£¬ÓÖÖª¶¨µãQ£¨-4£¬3£©£¬
¡àÖ±ÏßlMQ£ºy=3£¬|MQ|=8£¬¡àµ±N£¨0£¬-5£©Ê±£¬S¡÷MQNÓÐ×î´óÖµ32£®
¼´×tan¡ÏMQNÓÐ×î´óֵΪ64£¬´ËʱֱÏßlµÄ·½³ÌΪ2x-y-5=0£®
£¨3£©A£¨-5£¬0£©£¬B£¨5£¬0£©£¬ÉèP£¨x£¬y£©£¬Ôòx2+y2£¼25   ¢Ù
ÓÉ||¡¢||¡¢||³ÉµÈ±ÈÊýÁУ¬µÃ||2=||•||£¬
¡ß=£¨-5-x£¬-y£©£¬=£¨5-x£¬-y£©£¬
¡àx2+y2=£¬ÕûÀíµÃ£ºx2-y2=£¬¼´x2=y2+¢Ú
Óɢ٢ڵãº0¡Üy2£¼£¬
¡à=£¨x2-25£©+y2=2y2-
¡à¡Ê[£¬0£©£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ý£¬µÈ±ÈÊýÁУ¬¿¼²éµÈ¼Ûת»¯µÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèÖ±Ïßy=
3
x+2m
ºÍÔ²x2+y2=n2ÏàÇУ¬ÆäÖÐm£¬n¡ÊN£¬0£¼|m-n|¡Ü1£¬Èôº¯Êýf£¨x£©=mx+1-nµÄÁãµãx0¡Ê£¨k£¬k+1£©k¡ÊZ£¬Ôòk=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÑγǶþÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²x2+
y2
4
=1ÔÚµÚÒ»ÏóÏ޵IJ¿·ÖΪÇúÏßC£¬ÇúÏßCÔÚÆäÉ϶¯µãP£¨x0£¬y0£©´¦µÄÇÐÏßlÓëxÖáºÍyÖáµÄ½»µã·Ö±ðΪA¡¢B£¬ÇÒÏòÁ¿
OM
=
OA
+
OB
£®
£¨1£©ÇóÇÐÏßlµÄ·½³Ì£¨ÓÃx0±íʾ£©£»
£¨2£©Ç󶯵ãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ®ÍÖÔ²C£º
x2
2
+y2=1
µÄÓÒ½¹µãΪF£¬ÓÒ×¼ÏßΪl£®
£¨1£©Çóµ½µãFºÍÖ±ÏßlµÄ¾àÀëÏàµÈµÄµãGµÄ¹ì¼£·½³Ì£®
£¨2£©¹ýµãF×÷Ö±Ïß½»ÍÖÔ²CÓÚµãA£¬B£¬ÓÖÖ±ÏßOA½»lÓÚµãT£¬Èô
OT
=2
OA
£¬ÇóÏß¶ÎABµÄ³¤£»
£¨3£©ÒÑÖªµãMµÄ×ø±êΪ£¨x0£¬y0£©£¬x0¡Ù0£¬Ö±ÏßOM½»Ö±Ïß
x0x
2
+y0y=1
ÓÚµãN£¬ÇÒºÍÍÖÔ²CµÄÒ»¸ö½»µãΪµãP£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ
OP
2
=¦Ë
OM
ON
£¿
£¬Èô´æÔÚ£¬Çó³öʵÊý¦Ë£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoy£¨OÎª×ø±êÔ­µã£©ÖУ¬ÍÖÔ²E1£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÁ½¸ö½¹µãÔÚÔ²E2£ºx2+y2=a+bÉÏ£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊÊÇ
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²E1ºÍÔ²E2µÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¾­¹ýÔ²E2ÉϵÄÒ»µãP£¨x0£¬y0£©µÄÖ±Ïßl£¬Ê¹lÓëÔ²E2ÏàÇУ¬ÓëÍÖÔ²E1ÓÐÁ½¸ö²»Í¬µÄ½»µãA¡¢B£¬ÇÒ
OA
OB
=3£¿Èô´æÔÚ£¬Çó³öµãPµÄºá×ø±êx0µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄϾ©¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
¹ýµãA(
a
2
£¬
a
2
)£¬B(
3
£¬1)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãP£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬FΪÍÖÔ²µÄ×󽹵㣬ֱÏßlµÄ·½³ÌΪx0x+3y0y-6=0£®
¢ÙÇóÖ¤£ºÖ±ÏßlÓëÍÖÔ²CÓÐΨһµÄ¹«¹²µã£»
¢ÚÈôµãF¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãΪQ£¬ÇóÖ¤£ºµ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬Ö±ÏßPQºã¹ý¶¨µã£¬²¢Çó³ö´Ë¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸