精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{e}^{x}-2a(x+1),x≥0\\ x+acosx,x<0\end{array}\right.(a∈R)$,若其在定义域内是单调函数,则实数a的取值范围是$[-1,\frac{1}{3}]$.

分析 若函数f(x)=$\left\{\begin{array}{l}{e}^{x}-2a(x+1),x≥0\\ x+acosx,x<0\end{array}\right.(a∈R)$,若其在定义域内是单调函数,则f′(x)=$\left\{\begin{array}{l}{e}^{x}-2a,x≥0\\ 1-asinx,x<0\end{array}\right.$满足f′(x)≥0恒成立,且分段处左段函数值不大于右段函数值,解得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{e}^{x}-2a(x+1),x≥0\\ x+acosx,x<0\end{array}\right.(a∈R)$,若其在定义域内是单调函数,
∴f′(x)=$\left\{\begin{array}{l}{e}^{x}-2a,x≥0\\ 1-asinx,x<0\end{array}\right.$满足f′(x)≥0恒成立,且分段处左段函数值不大于右段函数值;
∴$\left\{\begin{array}{l}2a≤1\\ \left|a\right|≤1\\ 1-2a≥a\end{array}\right.$,
解得:a∈$[-1,\frac{1}{3}]$,
故答案为:$[-1,\frac{1}{3}]$

点评 本题考查的知识点是分段函数的单调性,正确理解分段函数单调性的意义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x),是它的导函数,且恒有sinx•f′(x)>cosx•f(x)成立,则(  )
A.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)B.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求$\underset{lim}{x→0}$$\frac{x-arctanx}{xsi{n}^{2}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x;
(1)求f(x)的单调区间和极值:
(2)求f(x)在[0,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α∈(0,2π),则满足不等式$sin2α>{∫}_{0}^{α}cosxdx$的α的取值范围是(  )
A..$(\frac{π}{3},\frac{5π}{3})$B.(0,$\frac{π}{3}$)∪($\frac{5π}{3}$,2π)C.(0,$\frac{π}{3}$)∪(π,$\frac{5π}{3}$)D.($\frac{π}{3}$,π)∪($\frac{5π}{3}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
A.平行于同一条直线的两个平面平行或相交
B.平行于同一个平面的两个平面平行
C.平行于同一条直线的两条直线平行
D.平行于同一个平面的两条直线平行或相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在(-8,8)上的函数f(x)既为减函数,又为奇函数,解关于a的不等式f(7-a)+f(5-a)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各函数模型中,为指数增长模型的是(  )
A.y=0.7×1.09xB.y=100×0.95xC.y=0.5×0.35xD.y=2×($\frac{2}{3}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-3≤0.x∈R},B={m-1≤x≤5-m,m∈R}
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案