精英家教网 > 高中数学 > 题目详情
等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.
(1)求{an}与{bn};
(2)证明:
1
S1
+
1
S2
+…+
1
Sn
3
4
分析:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1
依题意有
ban+1
ban
=
q3+nd
q3+(n-1)d
=qd=64=26
S2b2=(6+d)q=64
,由此可导出an与bn
(2)Sn=3+5++(2n+1)=n(n+2),所以
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
,然后用裂项求和法进行求解.
解答:解:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1
依题意有
ban+1
ban
=
q3+nd
q3+(n-1)d
=qd=64=26
S2b2=(6+d)q=64

由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,
解①得d=2,q=8
故an=3+2(n-1)=2n+1,bn=8n-1
(2)Sn=3+5++(2n+1)=n(n+2)
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)<
3
4
点评:本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.考查分析解决问题的能力和运算能力,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,当a1,d变化时,若8(a4+a6+a8)+(a10+a12+a14+a16)是一个定值,那么下列各数中也为定值的是(  )
A、S7B、S8C、S13D、S15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•咸安区模拟)等差数列{an}的公差为d,前n项的和为Sn,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数中也为定值的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和记为Sn,若a2+a6+a10为一个确定的常数,则下列各数中可以用这个常数表示的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等差数列{an}的前n项和,若a2+a4+a15是一个确定的常数,则在下列各数中也是确定常数的项是
(填上你认为正确的值的序号)
①S7②S8③S13④S16

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,若a3+a9+a21的值为常数,则下列各数中也是常数的是(  )

查看答案和解析>>

同步练习册答案