精英家教网 > 高中数学 > 题目详情
1.如果一个正方体的体积在数值上等于V,表面积在数值上等于S,且V-S-m≥0恒成立,则实数m的范围是(  )
A.(-∞,-16]B.(-∞,-32]C.[-32,-16]D.以上答案都不对

分析 设正方体的棱长为a,a>0,则体积V=a3,表面积S=6a2,将不等式恒成立进行转化,构造函数,求函数的导数,利用导数研究函数的极值和最值即可..

解答 解:设正方体的棱长为a,a>0,
则体积V=a3,表面积S=6a2
则V-S-m≥0恒成立等价为a3-6a2-m≥0恒成立,
即m≤a3-6a2在a>0上恒成立,
设f(a)=a3-6a2
则f′(a)=3a2-12a=3a(a-4),
由f′(a)>0得a>4或a<0(舍),此时函数递增,
由f′(a)<0得0<a<4,此时函数递减,
即当a=4时,函数取得极小值同时也是最小值f(4)=43-6×42=64-96=-32,
则m≤-32,
故选:B.

点评 本题主要考查不等式恒成立的求解,设出棱长,求出对应的体积和表面积,利用参数分离法进行转化,构造函数,求函数的导数,利用导数研究函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0),则不等式f(m)+f(m2-2)≥0的解是m≥1.(注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:2x+y-3=0与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两支分别相交于P,Q两点,O为坐标原点,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,则$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+$\frac{1}{ρ}$).
(1)写出曲线C的参数方程;
(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.平面内有向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,-5),$\overrightarrow{OP}$=(cosα,sinα),当α为何值时,f(α)=$\overrightarrow{PA}$•$\overrightarrow{PB}$能取得最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知AB是圆O的直径,点C在圆O上(异于点A,B),连接BC并延长至点D,使得BC=CD,连接DA交圆O于点E,过点C作圆O的切线交AD于点F.
(Ⅰ)若∠DBA=60°,求证:点E为AD的中点;
(Ⅱ)若CF=$\frac{1}{2}$R,其中R为圆C的半径,求∠DBA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知AB是⊙O的直径,点D是⊙O上一点,过点D作⊙O的切线,交AB的延长线于点C,过点C作AC的垂线,交AD的延长线于点E.
(Ⅰ)求证:△CDE为等腰三角形;
(Ⅱ)若AD=2,$\frac{BC}{CE}$=$\frac{1}{2}$,求⊙O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,圆O的半径为1,A,B,C是圆周上的三点,过点A作圆O的切线与OC的延长线交于点P,若CP=AC,则∠COA=$\frac{π}{3}$;AP=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点,AC,BD交于O点,求二面角Q-BD-C的大小.

查看答案和解析>>

同步练习册答案