精英家教网 > 高中数学 > 题目详情
6.已知AB是圆O的直径,点C在圆O上(异于点A,B),连接BC并延长至点D,使得BC=CD,连接DA交圆O于点E,过点C作圆O的切线交AD于点F.
(Ⅰ)若∠DBA=60°,求证:点E为AD的中点;
(Ⅱ)若CF=$\frac{1}{2}$R,其中R为圆C的半径,求∠DBA.

分析 (1)先证明出△ABD为等边三角形,再连BE,根据三线合一定理证明出点E为AD的中点;
(2)连CO,运用中位线定理证明出BE∥CF,继而证出BE=R,最后求出∠DAB.

解答 解:(Ⅰ)证明:∵AB为圆O的直径,
∴AC⊥BD,而BC=CD.
∴AB=AD,而∠DBA=60°,
∴△ABD为等边三角形,连BE,由AB为圆的直径,
∴AD⊥BE,∴E为AD中点.
(Ⅱ)连CO,易知CO∥AD,
∵CF为圆O的切线,∴CF⊥CO,
∴CF⊥AD,又BE⊥AD,
∴BE∥CF,且CF=$\frac{1}{2}$BE,由CF=$\frac{1}{2}R$知BE=R,
∴∠DAB=30°.

点评 本题考查了圆的切线,等边三角形的性质,中位线定理等内容,注意适当地作出辅助线,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x≥1\\ f({2x}),0<x<1\end{array}$,则f[($\frac{1}{2}}$)${\;}^{\frac{1}{2}}$]=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出的结果是(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)的定义域是[2,+∞),则函数y=$\frac{f(2x)}{x-2}$的定义域是[1,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果一个正方体的体积在数值上等于V,表面积在数值上等于S,且V-S-m≥0恒成立,则实数m的范围是(  )
A.(-∞,-16]B.(-∞,-32]C.[-32,-16]D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO
(Ⅰ)求证:CD是⊙O的切线;
(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求$\frac{1}{CE}$+$\frac{1}{DE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,且($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-20.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.230+3除以7的余数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.三棱锥A-BCD中,BC⊥CD,AB⊥AC,∠ABC=60°,BC=CD=2,点E,F,G分别是棱AC,BC,BD的中点,直线AD与平面EFG的交点为H.
(1)求$\frac{AH}{HD}$的值;
(2)若AD=$\sqrt{5}$,求二面角A-BD-C的大小.

查看答案和解析>>

同步练习册答案