精英家教网 > 高中数学 > 题目详情

已知函数数学公式有三个不同零点,则实数a的取值范围为________.

-1≤a<0
分析:图解法.:画出图象如图所示,根据函数图象与函数g(x)图象之间的关系,当x>0时,相同;当x≤0时,f(x)的图象是由g(x)图象上下平移而得到,因此可以求出满足条件的实数a的取值范围.
解答:解:画出图象如图所示,
则当x>0时,f(x)的图象与x轴只有一个交点,
要使函数有三个不同零点,
只有当x≤0时,函数的图象与x轴有两个交点即可,
而|x+1|+a是由|x+1|上下平移而得到,
因此-1≤a<0.
故答案为:-1≤a<0.
点评:此题是个中档题.考查利用函数图象分析解决问题的能力,以及函数图象的平移变换,和函数零点与函数图象与x轴的交点之间的关系,体现 数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区一模)(理科)已知函数f(x)=
2
π
|x-π|,  (x>
π
2
)
sinx,   (0≤x≤
π
2
)
x2+x,   (x<0)
,M是非零常数,关于X的方程f(x)=m(m∈R)有且仅有三个不同的实数根,若b、a分别是三个根中的最小根和最大根,则β•sin(
π
3
+α)
=
1+
5
4
1+
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=2x3-3ax2+a+b(其中a,b为实常数).
(I)讨论函数的单调区间;
(II) 当a>0时,函数f(x)有三个不同的零点,证明:-a<b<a3-a;
(III) 若f(x)在区间[1,2]上是减函数,设关于X的方程f(x)=2x3-2ax2+3x+a+b的两个非零实数根为x1,x2.试问是否存在实数m,使得m2+tm+1≤|x1-x2|对任意满足条件的a及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省南京市高考数学模拟试卷(解析版) 题型:解答题

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二“零诊”考试文科数学试卷(解析版) 题型:解答题

已知函数(其中a,b为实常数)。

(Ⅰ)讨论函数的单调区间:

(Ⅱ)当时,函数有三个不同的零点,证明:

(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案