精英家教网 > 高中数学 > 题目详情
(2012•绵阳三模)已知函数f(x)=2x3-3ax2+a+b(其中a,b为实常数).
(I)讨论函数的单调区间;
(II) 当a>0时,函数f(x)有三个不同的零点,证明:-a<b<a3-a;
(III) 若f(x)在区间[1,2]上是减函数,设关于X的方程f(x)=2x3-2ax2+3x+a+b的两个非零实数根为x1,x2.试问是否存在实数m,使得m2+tm+1≤|x1-x2|对任意满足条件的a及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
分析:(I)求导函数,对参数a进行讨论,利用导数的正负,确定函数的单调区间;
(II)确定f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3,要使f(x)有三个不同的零点,则
f(0)>0
f(a)<0
,从而得证;
(III)先确定|x1-x2|=
a2+12
,并求得其最小值,假设存在实数m满足条件,则m2+tm+1≤(
a2+12
min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,从而可求m的范围.
解答:(I)解:∵f′(x)=6x2-6ax=6x(x-a),
当a=0时,f′(x)=6x≥0,于是f(x)在R上单调递增;
当a>0时,x∈(0,a),f′(x)<0,得f(x)在(0,a)上单调递减;
x∈(-∞,0)∪(a,+∞),f′(x)>0,得f(x)在(-∞,0),(a,+∞)上单调递增;
当a<0时,x∈(a,0),f′(x)<0,得f(x)在(0,a)上单调递减;
x∈(-∞,a)∪(0,+∞),f′(x)>0,得f(x)在(-∞,a),(0,+∞)上单调递增.
综上所述:当a=0时,f(x)的增区间为(-∞,+∞);
当a>0时,f(x)的增区间为(-∞,0),(a,+∞),f(x)的减区间为(0,a);
当a<0时,f(x)的增区间为(-∞,a),(0,+∞),f(x)的减区间为(a,0).…(3分)
(II)证明:当a>0时,由(I)得f(x)在(-∞,0),(a,+∞)上是增函数,f(x)在(0,a)上是减函数;
则f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3
要使f(x)有三个不同的零点,则
f(0)>0
f(a)<0
,即
a+b>0
a+b-a3<0

可得-a<b<a3-a.…(8分)
(III)解:由2x3-3ax2+a+b=x3-2ax2+3x+a+b,得x3-ax2-3x=0即x(x2-ax-3)=0,
由题意得x2-ax-3=0有两非零实数根x1,x2,则x1+x2=a,x1x2=-3,
∴|x1-x2|=
a2+12

∵f (x)在[1,2]上是减函数,
∴f′(x)=6x2-6ax=6x(x-a)≤0在[1,2]上恒成立,其中x-a≤0即x≤a在[1,2]上恒成立,
∴a≥2.
a2+12
≥4.
假设存在实数m满足条件,则m2+tm+1≤(
a2+12
min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,
m2-m-3≤0
m2+m-3≤0
,解得
1-
13
2
≤m≤
13
-1
2

∴存在实数m满足条件,此时m∈[
1-
13
2
13
-1
2
].  …(14分)
点评:本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,考查函数的极值与最值,考查恒成立问题,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绵阳三模)抛物线y=-x2的焦点坐标为
(0,-
1
4
(0,-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
,x∈R)在一个周期内的图象如图所示.则y=f(x)的图象可由函数y=cosx的图象(纵坐标不变)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知正项等差数列{an}的前n项和为Sn,且S15=45,M为a5,a11的等比中项,则M的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=
ax
+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x-y-2=0.
(I)用a表示b,c;
(II)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案