(本小题满分10分)选修4-1:几何证明选讲
如图,D,E分别为
的边AB,AC上的点,且不与
的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程
的两个根.
(I)证明:C,B,D,E四点共圆;
(II)若
,且
求C,B,D,E所在圆的半径.
解:
(I)连接DE,根据题意在△ADE和△ACB中,
AD×AB=mn=AE×AC,
即
.又∠DAE=∠CAB,从而△ADE∽△ACB
因此∠ADE=∠ACB
所以C,B,D,E四点共圆.
(Ⅱ)m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.
故 AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.
由于∠A=900,故GH∥AB, HF∥AC. HF=AG=5,DF=
(12-2)=5.
故C,B,D,E四点所在圆的半径为5![]()
科目:高中数学 来源: 题型:
|
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com