精英家教网 > 高中数学 > 题目详情

已知。若“”为真命题,则的取值范围是(   )

A .                    B.

C.                     D.

 

【答案】

D

【解析】解:因为,则非P表示的原命题的否定,利用全程命题和特称命题的关系可知为为真命题,那么则只要判别式大于等于零即可,可解得选项D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命题q:存在x∈[-1,1],使得m≤ax成立
(Ⅰ)若p为真命题,求m的取值范围;
(Ⅱ)当a=1,若p且q为假,p或q为真,求m的取值范围.
(Ⅲ)若a>0且p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式a2-5a-3≥3恒成立,命题q:不等式x2+ax+2<0有解;若p为真命题,q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:-x2+6x+16≥0,q:x2-4x+4-m2≤0(m>0).
(1)若p为真命题,求实数x的取值范围.
(2)若p为q成立的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设p:函数f(x)=x2+(a-1)x是区间(1,+∞)上的增函数,q:方程x2-ay2=1表示双曲线.
(1)若p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案