精英家教网 > 高中数学 > 题目详情
已知函数f (x)=ax2+bx+l( a,b∈R,a≠0 ),函数f (x)有且只有一个零点,且f (-1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)当x∈[-2,2]时,g( x)=f (x)-kx不是单调函数,求实数k的取值范围.
分析:(I)由f(-1)=0可得a,b之间的关系,然后由f (x)有且只有一个零点可得,△=b2-4a=0,联立方程可求a,b
(II)由(I)可知g(x)=f(x)=k,则可得g(x)=x2+(2-k)x+1在x∈[-2,2]时不是单调函数可得-2<
k-2
2
<2
可求k的范围
解答:解:(I)∵f(-1)=0
∴a-b+1=0即b=a+1①
∵f (x)=ax2+bx+l有且只有一个零点
∴△=b2-4a=0②
联立①②可得a=1,b=2
(II)由(I)可知f(x)=x2+2x+1
∴g(x)=x2+(2-k)x+1
-2<
k-2
2
<2

∴-2<k<6
即实数k的取值范围为(-2,6)
点评:本题主要考查了利用待定系数法求解二次函数的解析式,解答(I)的关键是由函数只有一个零点的条件的应用,解答(II)的关键是熟练灵活利用二次函数的性质
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案